boring2/pkey.rs

370 lines
10 KiB
Rust

use libc::{c_int, c_uint};
#[allow(non_camel_case_types)]
type EVP_PKEY = *libc::c_void;
#[allow(non_camel_case_types)]
type ANYKEY = *libc::c_void;
#[allow(non_camel_case_types)]
type RSA = *libc::c_void;
#[link_name = "crypto"]
#[abi = "cdecl"]
extern mod libcrypto {
fn EVP_PKEY_new() -> *EVP_PKEY;
fn EVP_PKEY_free(k: *EVP_PKEY);
fn EVP_PKEY_assign(k: *EVP_PKEY, t: c_int, inner: *ANYKEY);
fn EVP_PKEY_get1_RSA(k: *EVP_PKEY) -> *RSA;
fn i2d_PublicKey(k: *EVP_PKEY, buf: &*mut u8) -> c_int;
fn d2i_PublicKey(t: c_int, k: &*EVP_PKEY, buf: &*u8, len: c_uint) -> *EVP_PKEY;
fn i2d_PrivateKey(k: *EVP_PKEY, buf: &*mut u8) -> c_int;
fn d2i_PrivateKey(t: c_int, k: &*EVP_PKEY, buf: &*u8, len: c_uint) -> *EVP_PKEY;
fn RSA_generate_key(modsz: c_uint, e: c_uint, cb: *u8, cbarg: *u8) -> *RSA;
fn RSA_size(k: *RSA) -> c_uint;
fn RSA_public_encrypt(flen: c_uint, from: *u8, to: *mut u8, k: *RSA,
pad: c_int) -> c_int;
fn RSA_private_decrypt(flen: c_uint, from: *u8, to: *mut u8, k: *RSA,
pad: c_int) -> c_int;
fn RSA_sign(t: c_int, m: *u8, mlen: c_uint, sig: *mut u8, siglen: *c_uint,
k: *RSA) -> c_int;
fn RSA_verify(t: c_int, m: *u8, mlen: c_uint, sig: *u8, siglen: c_uint,
k: *RSA) -> c_int;
}
enum Parts {
Neither,
Public,
Both
}
#[doc = "Represents a role an asymmetric key might be appropriate for."]
pub enum Role {
Encrypt,
Decrypt,
Sign,
Verify
}
fn rsa_to_any(rsa: *RSA) -> *ANYKEY unsafe {
cast::reinterpret_cast(&rsa)
}
fn any_to_rsa(anykey: *ANYKEY) -> *RSA unsafe {
cast::reinterpret_cast(&anykey)
}
pub struct PKey {
priv mut evp: *EVP_PKEY,
priv mut parts: Parts,
}
pub fn PKey() -> PKey {
PKey { evp: libcrypto::EVP_PKEY_new(), parts: Neither }
}
priv impl PKey {
fn _tostr(f: fn@(*EVP_PKEY, &*mut u8) -> c_int) -> ~[u8] unsafe {
let buf = ptr::mut_null();
let len = f(self.evp, &buf);
if len < 0 as c_int { return ~[]; }
let mut s = vec::from_elem(len as uint, 0u8);
let r = do vec::as_mut_buf(s) |ps, _len| {
f(self.evp, &ps)
};
vec::slice(s, 0u, r as uint)
}
fn _fromstr(
s: &[u8],
f: fn@(c_int, &*EVP_PKEY, &*u8, c_uint) -> *EVP_PKEY
) unsafe {
do vec::as_imm_buf(s) |ps, len| {
let evp = ptr::null();
f(6 as c_int, &evp, &ps, len as c_uint);
self.evp = evp;
}
}
}
///Represents a public key, optionally with a private key attached.
pub impl PKey {
fn gen(keysz: uint) unsafe {
let rsa = libcrypto::RSA_generate_key(
keysz as c_uint,
65537u as c_uint,
ptr::null(),
ptr::null()
);
let rsa_ = rsa_to_any(rsa);
// XXX: 6 == NID_rsaEncryption
libcrypto::EVP_PKEY_assign(self.evp, 6 as c_int, rsa_);
self.parts = Both;
}
/**
* Returns a serialized form of the public key, suitable for load_pub().
*/
fn save_pub() -> ~[u8] {
self._tostr(libcrypto::i2d_PublicKey)
}
/**
* Loads a serialized form of the public key, as produced by save_pub().
*/
fn load_pub(s: &[u8]) {
self._fromstr(s, libcrypto::d2i_PublicKey);
self.parts = Public;
}
/**
* Returns a serialized form of the public and private keys, suitable for
* load_priv().
*/
fn save_priv() -> ~[u8] {
self._tostr(libcrypto::i2d_PrivateKey)
}
/**
* Loads a serialized form of the public and private keys, as produced by
* save_priv().
*/
fn load_priv(s: &[u8]) {
self._fromstr(s, libcrypto::d2i_PrivateKey);
self.parts = Both;
}
/**
* Returns the size of the public key modulus.
*/
fn size() -> uint {
libcrypto::RSA_size(libcrypto::EVP_PKEY_get1_RSA(self.evp)) as uint
}
/**
* Returns whether this pkey object can perform the specified role.
*/
fn can(r: Role) -> bool {
match r {
Encrypt =>
match self.parts {
Neither => false,
_ => true,
},
Verify =>
match self.parts {
Neither => false,
_ => true,
},
Decrypt =>
match self.parts {
Both => true,
_ => false,
},
Sign =>
match self.parts {
Both => true,
_ => false,
},
}
}
/**
* Returns the maximum amount of data that can be encrypted by an encrypt()
* call.
*/
fn max_data() -> uint unsafe {
let rsa = libcrypto::EVP_PKEY_get1_RSA(self.evp);
let len = libcrypto::RSA_size(rsa);
// 41 comes from RSA_public_encrypt(3) for OAEP
len as uint - 41u
}
/**
* Encrypts data using OAEP padding, returning the encrypted data. The
* supplied data must not be larger than max_data().
*/
fn encrypt(s: &[u8]) -> ~[u8] unsafe {
let rsa = libcrypto::EVP_PKEY_get1_RSA(self.evp);
let len = libcrypto::RSA_size(rsa);
// 41 comes from RSA_public_encrypt(3) for OAEP
assert s.len() < libcrypto::RSA_size(rsa) as uint - 41u;
let mut r = vec::from_elem(len as uint + 1u, 0u8);
do vec::as_mut_buf(r) |pr, _len| {
do vec::as_imm_buf(s) |ps, s_len| {
// XXX: 4 == RSA_PKCS1_OAEP_PADDING
let rv = libcrypto::RSA_public_encrypt(
s_len as c_uint,
ps,
pr,
rsa, 4 as c_int
);
if rv < 0 as c_int {
~[]
} else {
vec::slice(r, 0u, rv as uint)
}
}
}
}
/**
* Decrypts data, expecting OAEP padding, returning the decrypted data.
*/
fn decrypt(s: &[u8]) -> ~[u8] unsafe {
let rsa = libcrypto::EVP_PKEY_get1_RSA(self.evp);
let len = libcrypto::RSA_size(rsa);
assert s.len() as c_uint == libcrypto::RSA_size(rsa);
let mut r = vec::from_elem(len as uint + 1u, 0u8);
do vec::as_mut_buf(r) |pr, _len| {
do vec::as_imm_buf(s) |ps, s_len| {
// XXX: 4 == RSA_PKCS1_OAEP_PADDING
let rv = libcrypto::RSA_private_decrypt(
s_len as c_uint,
ps,
pr,
rsa,
4 as c_int
);
if rv < 0 as c_int {
~[]
} else {
vec::slice(r, 0u, rv as uint)
}
}
}
}
/**
* Signs data, using OpenSSL's default scheme and sha256. Unlike encrypt(),
* can process an arbitrary amount of data; returns the signature.
*/
fn sign(s: &[u8]) -> ~[u8] unsafe {
let rsa = libcrypto::EVP_PKEY_get1_RSA(self.evp);
let len = libcrypto::RSA_size(rsa);
let mut r = vec::from_elem(len as uint + 1u, 0u8);
do vec::as_mut_buf(r) |pr, _len| {
do vec::as_imm_buf(s) |ps, s_len| {
let plen = ptr::addr_of(len);
// XXX: 672 == NID_sha256
let rv = libcrypto::RSA_sign(
672 as c_int,
ps,
s_len as c_uint,
pr,
plen,
rsa);
if rv < 0 as c_int {
~[]
} else {
vec::slice(r, 0u, *plen as uint)
}
}
}
}
/**
* Verifies a signature s (using OpenSSL's default scheme and sha256) on a
* message m. Returns true if the signature is valid, and false otherwise.
*/
fn verify(m: &[u8], s: &[u8]) -> bool unsafe {
let rsa = libcrypto::EVP_PKEY_get1_RSA(self.evp);
do vec::as_imm_buf(m) |pm, m_len| {
do vec::as_imm_buf(s) |ps, s_len| {
// XXX: 672 == NID_sha256
let rv = libcrypto::RSA_verify(
672 as c_int,
pm,
m_len as c_uint,
ps,
s_len as c_uint,
rsa
);
rv == 1 as c_int
}
}
}
}
#[cfg(test)]
mod tests {
#[test]
fn test_gen_pub() {
let k0 = PKey();
let k1 = PKey();
k0.gen(512u);
k1.load_pub(k0.save_pub());
assert(k0.save_pub() == k1.save_pub());
assert(k0.size() == k1.size());
assert(k0.can(Encrypt));
assert(k0.can(Decrypt));
assert(k0.can(Verify));
assert(k0.can(Sign));
assert(k1.can(Encrypt));
assert(!k1.can(Decrypt));
assert(k1.can(Verify));
assert(!k1.can(Sign));
}
#[test]
fn test_gen_priv() {
let k0 = PKey();
let k1 = PKey();
k0.gen(512u);
k1.load_priv(k0.save_priv());
assert(k0.save_priv() == k1.save_priv());
assert(k0.size() == k1.size());
assert(k0.can(Encrypt));
assert(k0.can(Decrypt));
assert(k0.can(Verify));
assert(k0.can(Sign));
assert(k1.can(Encrypt));
assert(k1.can(Decrypt));
assert(k1.can(Verify));
assert(k1.can(Sign));
}
#[test]
fn test_encrypt() {
let k0 = PKey();
let k1 = PKey();
let msg = ~[0xdeu8, 0xadu8, 0xd0u8, 0x0du8];
k0.gen(512u);
k1.load_pub(k0.save_pub());
let emsg = k1.encrypt(msg);
let dmsg = k0.decrypt(emsg);
assert(msg == dmsg);
}
#[test]
fn test_sign() {
let k0 = PKey();
let k1 = PKey();
let msg = ~[0xdeu8, 0xadu8, 0xd0u8, 0x0du8];
k0.gen(512u);
k1.load_pub(k0.save_pub());
let sig = k0.sign(msg);
let rv = k1.verify(msg, sig);
assert(rv == true);
}
}