use libc::{c_int, c_uint}; #[allow(non_camel_case_types)] type EVP_PKEY = *libc::c_void; #[allow(non_camel_case_types)] type ANYKEY = *libc::c_void; #[allow(non_camel_case_types)] type RSA = *libc::c_void; #[link_name = "crypto"] #[abi = "cdecl"] extern mod libcrypto { fn EVP_PKEY_new() -> *EVP_PKEY; fn EVP_PKEY_free(k: *EVP_PKEY); fn EVP_PKEY_assign(k: *EVP_PKEY, t: c_int, inner: *ANYKEY); fn EVP_PKEY_get1_RSA(k: *EVP_PKEY) -> *RSA; fn i2d_PublicKey(k: *EVP_PKEY, buf: &*mut u8) -> c_int; fn d2i_PublicKey(t: c_int, k: &*EVP_PKEY, buf: &*u8, len: c_uint) -> *EVP_PKEY; fn i2d_PrivateKey(k: *EVP_PKEY, buf: &*mut u8) -> c_int; fn d2i_PrivateKey(t: c_int, k: &*EVP_PKEY, buf: &*u8, len: c_uint) -> *EVP_PKEY; fn RSA_generate_key(modsz: c_uint, e: c_uint, cb: *u8, cbarg: *u8) -> *RSA; fn RSA_size(k: *RSA) -> c_uint; fn RSA_public_encrypt(flen: c_uint, from: *u8, to: *mut u8, k: *RSA, pad: c_int) -> c_int; fn RSA_private_decrypt(flen: c_uint, from: *u8, to: *mut u8, k: *RSA, pad: c_int) -> c_int; fn RSA_sign(t: c_int, m: *u8, mlen: c_uint, sig: *mut u8, siglen: *c_uint, k: *RSA) -> c_int; fn RSA_verify(t: c_int, m: *u8, mlen: c_uint, sig: *u8, siglen: c_uint, k: *RSA) -> c_int; } enum Parts { Neither, Public, Both } #[doc = "Represents a role an asymmetric key might be appropriate for."] pub enum Role { Encrypt, Decrypt, Sign, Verify } fn rsa_to_any(rsa: *RSA) -> *ANYKEY unsafe { cast::reinterpret_cast(&rsa) } fn any_to_rsa(anykey: *ANYKEY) -> *RSA unsafe { cast::reinterpret_cast(&anykey) } pub struct PKey { priv mut evp: *EVP_PKEY, priv mut parts: Parts, } pub fn PKey() -> PKey { PKey { evp: libcrypto::EVP_PKEY_new(), parts: Neither } } priv impl PKey { fn _tostr(f: fn@(*EVP_PKEY, &*mut u8) -> c_int) -> ~[u8] unsafe { let buf = ptr::mut_null(); let len = f(self.evp, &buf); if len < 0 as c_int { return ~[]; } let mut s = vec::from_elem(len as uint, 0u8); let r = do vec::as_mut_buf(s) |ps, _len| { f(self.evp, &ps) }; vec::slice(s, 0u, r as uint) } fn _fromstr( s: &[u8], f: fn@(c_int, &*EVP_PKEY, &*u8, c_uint) -> *EVP_PKEY ) unsafe { do vec::as_imm_buf(s) |ps, len| { let evp = ptr::null(); f(6 as c_int, &evp, &ps, len as c_uint); self.evp = evp; } } } ///Represents a public key, optionally with a private key attached. pub impl PKey { fn gen(keysz: uint) unsafe { let rsa = libcrypto::RSA_generate_key( keysz as c_uint, 65537u as c_uint, ptr::null(), ptr::null() ); let rsa_ = rsa_to_any(rsa); // XXX: 6 == NID_rsaEncryption libcrypto::EVP_PKEY_assign(self.evp, 6 as c_int, rsa_); self.parts = Both; } /** * Returns a serialized form of the public key, suitable for load_pub(). */ fn save_pub() -> ~[u8] { self._tostr(libcrypto::i2d_PublicKey) } /** * Loads a serialized form of the public key, as produced by save_pub(). */ fn load_pub(s: &[u8]) { self._fromstr(s, libcrypto::d2i_PublicKey); self.parts = Public; } /** * Returns a serialized form of the public and private keys, suitable for * load_priv(). */ fn save_priv() -> ~[u8] { self._tostr(libcrypto::i2d_PrivateKey) } /** * Loads a serialized form of the public and private keys, as produced by * save_priv(). */ fn load_priv(s: &[u8]) { self._fromstr(s, libcrypto::d2i_PrivateKey); self.parts = Both; } /** * Returns the size of the public key modulus. */ fn size() -> uint { libcrypto::RSA_size(libcrypto::EVP_PKEY_get1_RSA(self.evp)) as uint } /** * Returns whether this pkey object can perform the specified role. */ fn can(r: Role) -> bool { match r { Encrypt => match self.parts { Neither => false, _ => true, }, Verify => match self.parts { Neither => false, _ => true, }, Decrypt => match self.parts { Both => true, _ => false, }, Sign => match self.parts { Both => true, _ => false, }, } } /** * Returns the maximum amount of data that can be encrypted by an encrypt() * call. */ fn max_data() -> uint unsafe { let rsa = libcrypto::EVP_PKEY_get1_RSA(self.evp); let len = libcrypto::RSA_size(rsa); // 41 comes from RSA_public_encrypt(3) for OAEP len as uint - 41u } /** * Encrypts data using OAEP padding, returning the encrypted data. The * supplied data must not be larger than max_data(). */ fn encrypt(s: &[u8]) -> ~[u8] unsafe { let rsa = libcrypto::EVP_PKEY_get1_RSA(self.evp); let len = libcrypto::RSA_size(rsa); // 41 comes from RSA_public_encrypt(3) for OAEP assert s.len() < libcrypto::RSA_size(rsa) as uint - 41u; let mut r = vec::from_elem(len as uint + 1u, 0u8); do vec::as_mut_buf(r) |pr, _len| { do vec::as_imm_buf(s) |ps, s_len| { // XXX: 4 == RSA_PKCS1_OAEP_PADDING let rv = libcrypto::RSA_public_encrypt( s_len as c_uint, ps, pr, rsa, 4 as c_int ); if rv < 0 as c_int { ~[] } else { vec::slice(r, 0u, rv as uint) } } } } /** * Decrypts data, expecting OAEP padding, returning the decrypted data. */ fn decrypt(s: &[u8]) -> ~[u8] unsafe { let rsa = libcrypto::EVP_PKEY_get1_RSA(self.evp); let len = libcrypto::RSA_size(rsa); assert s.len() as c_uint == libcrypto::RSA_size(rsa); let mut r = vec::from_elem(len as uint + 1u, 0u8); do vec::as_mut_buf(r) |pr, _len| { do vec::as_imm_buf(s) |ps, s_len| { // XXX: 4 == RSA_PKCS1_OAEP_PADDING let rv = libcrypto::RSA_private_decrypt( s_len as c_uint, ps, pr, rsa, 4 as c_int ); if rv < 0 as c_int { ~[] } else { vec::slice(r, 0u, rv as uint) } } } } /** * Signs data, using OpenSSL's default scheme and sha256. Unlike encrypt(), * can process an arbitrary amount of data; returns the signature. */ fn sign(s: &[u8]) -> ~[u8] unsafe { let rsa = libcrypto::EVP_PKEY_get1_RSA(self.evp); let len = libcrypto::RSA_size(rsa); let mut r = vec::from_elem(len as uint + 1u, 0u8); do vec::as_mut_buf(r) |pr, _len| { do vec::as_imm_buf(s) |ps, s_len| { let plen = ptr::addr_of(len); // XXX: 672 == NID_sha256 let rv = libcrypto::RSA_sign( 672 as c_int, ps, s_len as c_uint, pr, plen, rsa); if rv < 0 as c_int { ~[] } else { vec::slice(r, 0u, *plen as uint) } } } } /** * Verifies a signature s (using OpenSSL's default scheme and sha256) on a * message m. Returns true if the signature is valid, and false otherwise. */ fn verify(m: &[u8], s: &[u8]) -> bool unsafe { let rsa = libcrypto::EVP_PKEY_get1_RSA(self.evp); do vec::as_imm_buf(m) |pm, m_len| { do vec::as_imm_buf(s) |ps, s_len| { // XXX: 672 == NID_sha256 let rv = libcrypto::RSA_verify( 672 as c_int, pm, m_len as c_uint, ps, s_len as c_uint, rsa ); rv == 1 as c_int } } } } #[cfg(test)] mod tests { #[test] fn test_gen_pub() { let k0 = PKey(); let k1 = PKey(); k0.gen(512u); k1.load_pub(k0.save_pub()); assert(k0.save_pub() == k1.save_pub()); assert(k0.size() == k1.size()); assert(k0.can(Encrypt)); assert(k0.can(Decrypt)); assert(k0.can(Verify)); assert(k0.can(Sign)); assert(k1.can(Encrypt)); assert(!k1.can(Decrypt)); assert(k1.can(Verify)); assert(!k1.can(Sign)); } #[test] fn test_gen_priv() { let k0 = PKey(); let k1 = PKey(); k0.gen(512u); k1.load_priv(k0.save_priv()); assert(k0.save_priv() == k1.save_priv()); assert(k0.size() == k1.size()); assert(k0.can(Encrypt)); assert(k0.can(Decrypt)); assert(k0.can(Verify)); assert(k0.can(Sign)); assert(k1.can(Encrypt)); assert(k1.can(Decrypt)); assert(k1.can(Verify)); assert(k1.can(Sign)); } #[test] fn test_encrypt() { let k0 = PKey(); let k1 = PKey(); let msg = ~[0xdeu8, 0xadu8, 0xd0u8, 0x0du8]; k0.gen(512u); k1.load_pub(k0.save_pub()); let emsg = k1.encrypt(msg); let dmsg = k0.decrypt(emsg); assert(msg == dmsg); } #[test] fn test_sign() { let k0 = PKey(); let k1 = PKey(); let msg = ~[0xdeu8, 0xadu8, 0xd0u8, 0x0du8]; k0.gen(512u); k1.load_pub(k0.save_pub()); let sig = k0.sign(msg); let rv = k1.verify(msg, sig); assert(rv == true); } }