boring2/symm.rs

206 lines
5.9 KiB
Rust

use std::libc::c_int;
use std::libc;
use std::vec;
#[allow(non_camel_case_types)]
pub type EVP_CIPHER_CTX = *libc::c_void;
#[allow(non_camel_case_types)]
pub type EVP_CIPHER = *libc::c_void;
pub mod libcrypto {
use super::*;
use std::libc::{c_int, c_uint};
extern {
#[link_args = "-lcrypto"]
fn EVP_CIPHER_CTX_new() -> EVP_CIPHER_CTX;
fn EVP_CIPHER_CTX_set_padding(ctx: EVP_CIPHER_CTX, padding: c_int);
fn EVP_aes_128_ecb() -> EVP_CIPHER;
fn EVP_aes_128_cbc() -> EVP_CIPHER;
fn EVP_aes_192_ecb() -> EVP_CIPHER;
fn EVP_aes_192_cbc() -> EVP_CIPHER;
fn EVP_aes_256_ecb() -> EVP_CIPHER;
fn EVP_aes_256_cbc() -> EVP_CIPHER;
fn EVP_CipherInit(ctx: EVP_CIPHER_CTX, evp: EVP_CIPHER,
key: *u8, iv: *u8, mode: c_int);
fn EVP_CipherUpdate(ctx: EVP_CIPHER_CTX, outbuf: *mut u8,
outlen: &mut c_uint, inbuf: *u8, inlen: c_int);
fn EVP_CipherFinal(ctx: EVP_CIPHER_CTX, res: *mut u8, len: &mut c_int);
}
}
pub enum Mode {
Encrypt,
Decrypt,
}
#[allow(non_camel_case_types)]
pub enum Type {
AES_256_ECB,
AES_256_CBC,
}
fn evpc(t: Type) -> (EVP_CIPHER, uint, uint) {
unsafe {
match t {
AES_256_ECB => (libcrypto::EVP_aes_256_ecb(), 32u, 16u),
AES_256_CBC => (libcrypto::EVP_aes_256_cbc(), 32u, 16u),
}
}
}
/// Represents a symmetric cipher context.
pub struct Crypter {
priv evp: EVP_CIPHER,
priv ctx: EVP_CIPHER_CTX,
priv keylen: uint,
priv blocksize: uint
}
pub fn Crypter(t: Type) -> Crypter {
let ctx = unsafe { libcrypto::EVP_CIPHER_CTX_new() };
let (evp, keylen, blocksz) = evpc(t);
Crypter { evp: evp, ctx: ctx, keylen: keylen, blocksize: blocksz }
}
impl Crypter {
/**
* Enables or disables padding. If padding is disabled, total amount of
* data encrypted must be a multiple of block size.
*/
pub fn pad(&self, padding: bool) {
let v = if padding { 1 } else { 0} as c_int;
unsafe { libcrypto::EVP_CIPHER_CTX_set_padding(self.ctx, v) };
}
/**
* Initializes this crypter.
*/
pub fn init(&self, mode: Mode, key: &[u8], iv: &[u8]) {
unsafe {
let mode = match mode {
Encrypt => 1 as c_int,
Decrypt => 0 as c_int,
};
assert_eq!(key.len(), self.keylen);
do key.as_imm_buf |pkey, _len| {
do iv.as_imm_buf |piv, _len| {
libcrypto::EVP_CipherInit(
self.ctx,
self.evp,
pkey,
piv,
mode
)
}
}
}
}
/**
* Update this crypter with more data to encrypt or decrypt. Returns
* encrypted or decrypted bytes.
*/
pub fn update(&self, data: &[u8]) -> ~[u8] {
unsafe {
do data.as_imm_buf |pdata, len| {
let mut res = vec::from_elem(len + self.blocksize, 0u8);
let reslen = do res.as_mut_buf |pres, _len| {
let mut reslen = (len + self.blocksize) as u32;
libcrypto::EVP_CipherUpdate(
self.ctx,
pres,
&mut reslen,
pdata,
len as c_int
);
reslen
};
res.truncate(reslen as uint);
res
}
}
}
/**
* Finish crypting. Returns the remaining partial block of output, if any.
*/
pub fn final(&self) -> ~[u8] {
unsafe {
let mut res = vec::from_elem(self.blocksize, 0u8);
let reslen = do res.as_mut_buf |pres, _len| {
let mut reslen = self.blocksize as c_int;
libcrypto::EVP_CipherFinal(self.ctx, pres, &mut reslen);
reslen
};
res.truncate(reslen as uint);
res
}
}
}
/**
* Encrypts data, using the specified crypter type in encrypt mode with the
* specified key and iv; returns the resulting (encrypted) data.
*/
pub fn encrypt(t: Type, key: &[u8], iv: ~[u8], data: &[u8]) -> ~[u8] {
let c = Crypter(t);
c.init(Encrypt, key, iv);
let r = c.update(data);
let rest = c.final();
r + rest
}
/**
* Decrypts data, using the specified crypter type in decrypt mode with the
* specified key and iv; returns the resulting (decrypted) data.
*/
pub fn decrypt(t: Type, key: &[u8], iv: ~[u8], data: &[u8]) -> ~[u8] {
let c = Crypter(t);
c.init(Decrypt, key, iv);
let r = c.update(data);
let rest = c.final();
r + rest
}
#[cfg(test)]
mod tests {
use super::*;
// Test vectors from FIPS-197:
// http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
#[test]
fn test_aes_256_ecb() {
let k0 =
~[ 0x00u8, 0x01u8, 0x02u8, 0x03u8, 0x04u8, 0x05u8, 0x06u8, 0x07u8,
0x08u8, 0x09u8, 0x0au8, 0x0bu8, 0x0cu8, 0x0du8, 0x0eu8, 0x0fu8,
0x10u8, 0x11u8, 0x12u8, 0x13u8, 0x14u8, 0x15u8, 0x16u8, 0x17u8,
0x18u8, 0x19u8, 0x1au8, 0x1bu8, 0x1cu8, 0x1du8, 0x1eu8, 0x1fu8 ];
let p0 =
~[ 0x00u8, 0x11u8, 0x22u8, 0x33u8, 0x44u8, 0x55u8, 0x66u8, 0x77u8,
0x88u8, 0x99u8, 0xaau8, 0xbbu8, 0xccu8, 0xddu8, 0xeeu8, 0xffu8 ];
let c0 =
~[ 0x8eu8, 0xa2u8, 0xb7u8, 0xcau8, 0x51u8, 0x67u8, 0x45u8, 0xbfu8,
0xeau8, 0xfcu8, 0x49u8, 0x90u8, 0x4bu8, 0x49u8, 0x60u8, 0x89u8 ];
let c = Crypter(AES_256_ECB);
c.init(Encrypt, k0, []);
c.pad(false);
let r0 = c.update(p0) + c.final();
assert!(r0 == c0);
c.init(Decrypt, k0, []);
c.pad(false);
let p1 = c.update(r0) + c.final();
assert!(p1 == p0);
}
}