use std::libc::c_int; use std::libc; use std::vec; #[allow(non_camel_case_types)] pub type EVP_CIPHER_CTX = *libc::c_void; #[allow(non_camel_case_types)] pub type EVP_CIPHER = *libc::c_void; pub mod libcrypto { use super::*; use std::libc::{c_int, c_uint}; extern { #[link_args = "-lcrypto"] fn EVP_CIPHER_CTX_new() -> EVP_CIPHER_CTX; fn EVP_CIPHER_CTX_set_padding(ctx: EVP_CIPHER_CTX, padding: c_int); fn EVP_aes_128_ecb() -> EVP_CIPHER; fn EVP_aes_128_cbc() -> EVP_CIPHER; fn EVP_aes_192_ecb() -> EVP_CIPHER; fn EVP_aes_192_cbc() -> EVP_CIPHER; fn EVP_aes_256_ecb() -> EVP_CIPHER; fn EVP_aes_256_cbc() -> EVP_CIPHER; fn EVP_CipherInit(ctx: EVP_CIPHER_CTX, evp: EVP_CIPHER, key: *u8, iv: *u8, mode: c_int); fn EVP_CipherUpdate(ctx: EVP_CIPHER_CTX, outbuf: *mut u8, outlen: &mut c_uint, inbuf: *u8, inlen: c_int); fn EVP_CipherFinal(ctx: EVP_CIPHER_CTX, res: *mut u8, len: &mut c_int); } } pub enum Mode { Encrypt, Decrypt, } #[allow(non_camel_case_types)] pub enum Type { AES_256_ECB, AES_256_CBC, } fn evpc(t: Type) -> (EVP_CIPHER, uint, uint) { unsafe { match t { AES_256_ECB => (libcrypto::EVP_aes_256_ecb(), 32u, 16u), AES_256_CBC => (libcrypto::EVP_aes_256_cbc(), 32u, 16u), } } } /// Represents a symmetric cipher context. pub struct Crypter { priv evp: EVP_CIPHER, priv ctx: EVP_CIPHER_CTX, priv keylen: uint, priv blocksize: uint } pub fn Crypter(t: Type) -> Crypter { let ctx = unsafe { libcrypto::EVP_CIPHER_CTX_new() }; let (evp, keylen, blocksz) = evpc(t); Crypter { evp: evp, ctx: ctx, keylen: keylen, blocksize: blocksz } } impl Crypter { /** * Enables or disables padding. If padding is disabled, total amount of * data encrypted must be a multiple of block size. */ pub fn pad(&self, padding: bool) { let v = if padding { 1 } else { 0} as c_int; unsafe { libcrypto::EVP_CIPHER_CTX_set_padding(self.ctx, v) }; } /** * Initializes this crypter. */ pub fn init(&self, mode: Mode, key: &[u8], iv: &[u8]) { unsafe { let mode = match mode { Encrypt => 1 as c_int, Decrypt => 0 as c_int, }; assert_eq!(key.len(), self.keylen); do key.as_imm_buf |pkey, _len| { do iv.as_imm_buf |piv, _len| { libcrypto::EVP_CipherInit( self.ctx, self.evp, pkey, piv, mode ) } } } } /** * Update this crypter with more data to encrypt or decrypt. Returns * encrypted or decrypted bytes. */ pub fn update(&self, data: &[u8]) -> ~[u8] { unsafe { do data.as_imm_buf |pdata, len| { let mut res = vec::from_elem(len + self.blocksize, 0u8); let reslen = do res.as_mut_buf |pres, _len| { let mut reslen = (len + self.blocksize) as u32; libcrypto::EVP_CipherUpdate( self.ctx, pres, &mut reslen, pdata, len as c_int ); reslen }; res.truncate(reslen as uint); res } } } /** * Finish crypting. Returns the remaining partial block of output, if any. */ pub fn final(&self) -> ~[u8] { unsafe { let mut res = vec::from_elem(self.blocksize, 0u8); let reslen = do res.as_mut_buf |pres, _len| { let mut reslen = self.blocksize as c_int; libcrypto::EVP_CipherFinal(self.ctx, pres, &mut reslen); reslen }; res.truncate(reslen as uint); res } } } /** * Encrypts data, using the specified crypter type in encrypt mode with the * specified key and iv; returns the resulting (encrypted) data. */ pub fn encrypt(t: Type, key: &[u8], iv: ~[u8], data: &[u8]) -> ~[u8] { let c = Crypter(t); c.init(Encrypt, key, iv); let r = c.update(data); let rest = c.final(); r + rest } /** * Decrypts data, using the specified crypter type in decrypt mode with the * specified key and iv; returns the resulting (decrypted) data. */ pub fn decrypt(t: Type, key: &[u8], iv: ~[u8], data: &[u8]) -> ~[u8] { let c = Crypter(t); c.init(Decrypt, key, iv); let r = c.update(data); let rest = c.final(); r + rest } #[cfg(test)] mod tests { use super::*; // Test vectors from FIPS-197: // http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf #[test] fn test_aes_256_ecb() { let k0 = ~[ 0x00u8, 0x01u8, 0x02u8, 0x03u8, 0x04u8, 0x05u8, 0x06u8, 0x07u8, 0x08u8, 0x09u8, 0x0au8, 0x0bu8, 0x0cu8, 0x0du8, 0x0eu8, 0x0fu8, 0x10u8, 0x11u8, 0x12u8, 0x13u8, 0x14u8, 0x15u8, 0x16u8, 0x17u8, 0x18u8, 0x19u8, 0x1au8, 0x1bu8, 0x1cu8, 0x1du8, 0x1eu8, 0x1fu8 ]; let p0 = ~[ 0x00u8, 0x11u8, 0x22u8, 0x33u8, 0x44u8, 0x55u8, 0x66u8, 0x77u8, 0x88u8, 0x99u8, 0xaau8, 0xbbu8, 0xccu8, 0xddu8, 0xeeu8, 0xffu8 ]; let c0 = ~[ 0x8eu8, 0xa2u8, 0xb7u8, 0xcau8, 0x51u8, 0x67u8, 0x45u8, 0xbfu8, 0xeau8, 0xfcu8, 0x49u8, 0x90u8, 0x4bu8, 0x49u8, 0x60u8, 0x89u8 ]; let c = Crypter(AES_256_ECB); c.init(Encrypt, k0, []); c.pad(false); let r0 = c.update(p0) + c.final(); assert!(r0 == c0); c.init(Decrypt, k0, []); c.pad(false); let p1 = c.update(r0) + c.final(); assert!(p1 == p0); } }