boring2/openssl/src/bn.rs

909 lines
26 KiB
Rust

use ffi;
use libc::{c_int, c_void};
use std::cmp::Ordering;
use std::ffi::{CStr, CString};
use std::{fmt, ptr};
use std::marker::PhantomData;
use std::ops::{Add, Div, Mul, Neg, Rem, Shl, Shr, Sub, Deref, DerefMut};
use {cvt, cvt_p, cvt_n};
use error::ErrorStack;
/// Specifies the desired properties of a randomly generated `BigNum`.
#[derive(Copy, Clone)]
#[repr(C)]
pub enum RNGProperty {
/// The most significant bit of the number is allowed to be 0.
MsbMaybeZero = -1,
/// The MSB should be set to 1.
MsbOne = 0,
/// The two most significant bits of the number will be set to 1, so that the product of two
/// such random numbers will always have `2 * bits` length.
TwoMsbOne = 1,
}
/// A context object for `BigNum` operations.
pub struct BnCtx(*mut ffi::BN_CTX);
impl Drop for BnCtx {
fn drop(&mut self) {
unsafe {
ffi::BN_CTX_free(self.0);
}
}
}
impl BnCtx {
/// Returns a new `BnCtx`.
pub fn new() -> Result<BnCtx, ErrorStack> {
unsafe {
cvt_p(ffi::BN_CTX_new()).map(BnCtx)
}
}
/// Places the result of `a * b` in `r`.
pub fn mul(&mut self,
r: &mut BigNumRef,
a: &BigNumRef,
b: &BigNumRef)
-> Result<(), ErrorStack> {
unsafe {
cvt(ffi::BN_mul(r.0, a.0, b.0, self.0)).map(|_| ())
}
}
/// Places the result of `a / b` in `dv` and `a mod b` in `rem`.
pub fn div(&mut self,
dv: Option<&mut BigNumRef>,
rem: Option<&mut BigNumRef>,
a: &BigNumRef,
b: &BigNumRef)
-> Result<(), ErrorStack> {
unsafe {
cvt(ffi::BN_div(dv.map(|b| b.0).unwrap_or(ptr::null_mut()),
rem.map(|b| b.0).unwrap_or(ptr::null_mut()),
a.0,
b.0,
self.0))
.map(|_| ())
}
}
/// Places the result of `a²` in `r`.
pub fn sqr(&mut self, r: &mut BigNumRef, a: &BigNumRef) -> Result<(), ErrorStack> {
unsafe {
cvt(ffi::BN_sqr(r.as_ptr(), a.as_ptr(), self.0)).map(|_| ())
}
}
/// Places the result of `a mod m` in `r`.
pub fn nnmod(&mut self,
r: &mut BigNumRef,
a: &BigNumRef,
m: &BigNumRef) -> Result<(), ErrorStack> {
unsafe {
cvt(ffi::BN_nnmod(r.as_ptr(), a.as_ptr(), m.as_ptr(), self.0)).map(|_| ())
}
}
/// Places the result of `(a + b) mod m` in `r`.
pub fn mod_add(&mut self,
r: &mut BigNumRef,
a: &BigNumRef,
b: &BigNumRef,
m: &BigNumRef)
-> Result<(), ErrorStack> {
unsafe {
cvt(ffi::BN_mod_add(r.as_ptr(), a.as_ptr(), b.as_ptr(), m.as_ptr(), self.0)).map(|_| ())
}
}
/// Places the result of `(a - b) mod m` in `r`.
pub fn mod_sub(&mut self,
r: &mut BigNumRef,
a: &BigNumRef,
b: &BigNumRef,
m: &BigNumRef)
-> Result<(), ErrorStack> {
unsafe {
cvt(ffi::BN_mod_sub(r.as_ptr(), a.as_ptr(), b.as_ptr(), m.as_ptr(), self.0)).map(|_| ())
}
}
/// Places the result of `(a * b) mod m` in `r`.
pub fn mod_mul(&mut self,
r: &mut BigNumRef,
a: &BigNumRef,
b: &BigNumRef,
m: &BigNumRef)
-> Result<(), ErrorStack> {
unsafe {
cvt(ffi::BN_mod_mul(r.as_ptr(), a.as_ptr(), b.as_ptr(), m.as_ptr(), self.0)).map(|_| ())
}
}
/// Places the result of `a² mod m` in `r`.
pub fn mod_sqr(&mut self,
r: &mut BigNumRef,
a: &BigNumRef,
m: &BigNumRef) -> Result<(), ErrorStack> {
unsafe {
cvt(ffi::BN_mod_sqr(r.as_ptr(), a.as_ptr(), m.as_ptr(), self.0)).map(|_| ())
}
}
/// Places the result of `a^p` in `r`.
pub fn exp(&mut self,
r: &mut BigNumRef,
a: &BigNumRef,
p: &BigNumRef) -> Result<(), ErrorStack> {
unsafe{
cvt(ffi::BN_exp(r.as_ptr(), a.as_ptr(), p.as_ptr(), self.0)).map(|_| ())
}
}
/// Places the result of `a^p mod m` in `r`.
pub fn mod_exp(&mut self,
r: &mut BigNumRef,
a: &BigNumRef,
p: &BigNumRef,
m: &BigNumRef) -> Result<(), ErrorStack> {
unsafe {
cvt(ffi::BN_mod_exp(r.as_ptr(), a.as_ptr(), p.as_ptr(), m.as_ptr(), self.0)).map(|_| ())
}
}
/// Places the inverse of `a` modulo `n` in `r`.
pub fn mod_inverse(&mut self,
r: &mut BigNumRef,
a: &BigNumRef,
n: &BigNumRef) -> Result<(), ErrorStack> {
unsafe {
cvt_p(ffi::BN_mod_inverse(r.0, a.0, n.0, self.0)).map(|_| ())
}
}
/// Places the greatest common denominator of `a` and `b` in `r`.
pub fn gcd(&mut self,
r: &mut BigNumRef,
a: &BigNumRef,
b: &BigNumRef) -> Result<(), ErrorStack> {
unsafe {
cvt(ffi::BN_gcd(r.0, a.0, b.0, self.0)).map(|_| ())
}
}
/// Checks whether `p` is prime.
///
/// Performs a Miller-Rabin probabilistic primality test with `checks` iterations.
///
/// Returns `true` if `p` is prime with an error probability of less than `0.25 ^ checks`.
pub fn is_prime(&mut self, p: &BigNumRef, checks: i32) -> Result<bool, ErrorStack> {
unsafe {
cvt_n(ffi::BN_is_prime_ex(p.0, checks.into(), self.0, ptr::null_mut())).map(|r| r != 0)
}
}
/// Checks whether `p` is prime with optional trial division.
///
/// If `do_trial_division` is `true`, first performs trial division by a number of small primes.
/// Then, like `is_prime`, performs a Miller-Rabin probabilistic primality test with `checks`
/// iterations.
///
/// # Return Value
///
/// Returns `true` if `p` is prime with an error probability of less than `0.25 ^ checks`.
pub fn is_prime_fasttest(&mut self,
p: &BigNumRef,
checks: i32,
do_trial_division: bool) -> Result<bool, ErrorStack> {
unsafe {
cvt_n(ffi::BN_is_prime_fasttest_ex(p.0,
checks.into(),
self.0,
do_trial_division as c_int,
ptr::null_mut()))
.map(|r| r != 0)
}
}
/// Generates a cryptographically strong pseudo-random `BigNum`, placing it in `r`.
///
/// # Parameters
///
/// * `bits`: Length of the number in bits.
/// * `prop`: The desired properties of the number.
/// * `odd`: If `true`, the generated number will be odd.
pub fn rand(r: &mut BigNumRef,
bits: i32,
prop: RNGProperty,
odd: bool)
-> Result<(), ErrorStack> {
unsafe {
cvt(ffi::BN_rand(r.0, bits.into(), prop as c_int, odd as c_int)).map(|_| ())
}
}
/// The cryptographically weak counterpart to `checked_new_random`.
pub fn pseudo_rand(r: &mut BigNumRef,
bits: i32,
prop: RNGProperty,
odd: bool)
-> Result<(), ErrorStack> {
unsafe {
cvt(ffi::BN_pseudo_rand(r.0, bits.into(), prop as c_int, odd as c_int)).map(|_| ())
}
}
}
/// A borrowed, signed, arbitrary-precision integer.
#[derive(Copy, Clone)]
pub struct BigNumRef<'a>(*mut ffi::BIGNUM, PhantomData<&'a ()>);
impl<'a> BigNumRef<'a> {
pub unsafe fn from_ptr(handle: *mut ffi::BIGNUM) -> BigNumRef<'a> {
BigNumRef(handle, PhantomData)
}
/// Adds a `u32` to `self`.
pub fn add_word(&mut self, w: u32) -> Result<(), ErrorStack> {
unsafe {
cvt(ffi::BN_add_word(self.0, w as ffi::BN_ULONG)).map(|_| ())
}
}
/// Subtracts a `u32` from `self`.
pub fn sub_word(&mut self, w: u32) -> Result<(), ErrorStack> {
unsafe {
cvt(ffi::BN_sub_word(self.0, w as ffi::BN_ULONG)).map(|_| ())
}
}
/// Multiplies a `u32` by `self`.
pub fn mul_word(&mut self, w: u32) -> Result<(), ErrorStack> {
unsafe {
cvt(ffi::BN_mul_word(self.0, w as ffi::BN_ULONG)).map(|_| ())
}
}
/// Divides `self` by a `u32`, returning the remainder.
pub fn div_word(&mut self, w: u32) -> Result<u64, ErrorStack> {
unsafe {
let r = ffi::BN_div_word(self.0, w.into());
if r == ffi::BN_ULONG::max_value() {
Err(ErrorStack::get())
} else {
Ok(r.into())
}
}
}
/// Returns the result of `self` modulo `w`.
pub fn mod_word(&self, w: u32) -> Result<u64, ErrorStack> {
unsafe {
let r = ffi::BN_mod_word(self.0, w.into());
if r == ffi::BN_ULONG::max_value() {
Err(ErrorStack::get())
} else {
Ok(r.into())
}
}
}
/// Places a cryptographically-secure pseudo-random number nonnegative
/// number less than `self` in `rnd`.
pub fn rand_in_range(&self, rnd: &mut BigNumRef) -> Result<(), ErrorStack> {
unsafe {
cvt(ffi::BN_rand_range(self.0, rnd.0)).map(|_| ())
}
}
/// The cryptographically weak counterpart to `rand_in_range`.
pub fn pseudo_rand_in_range(&self, rnd: &mut BigNumRef) -> Result<(), ErrorStack> {
unsafe {
cvt(ffi::BN_pseudo_rand_range(self.0, rnd.0)).map(|_| ())
}
}
/// Sets bit `n`. Equivalent to `self |= (1 << n)`.
///
/// When setting a bit outside of `self`, it is expanded.
pub fn set_bit(&mut self, n: i32) -> Result<(), ErrorStack> {
unsafe {
cvt(ffi::BN_set_bit(self.0, n.into())).map(|_| ())
}
}
/// Clears bit `n`, setting it to 0. Equivalent to `self &= ~(1 << n)`.
///
/// When clearing a bit outside of `self`, an error is returned.
pub fn clear_bit(&mut self, n: i32) -> Result<(), ErrorStack> {
unsafe {
cvt(ffi::BN_clear_bit(self.0, n.into())).map(|_| ())
}
}
/// Returns `true` if the `n`th bit of `self` is set to 1, `false` otherwise.
pub fn is_bit_set(&self, n: i32) -> bool {
unsafe {
ffi::BN_is_bit_set(self.0, n.into()) == 1
}
}
/// Truncates `self` to the lowest `n` bits.
///
/// An error occurs if `self` is already shorter than `n` bits.
pub fn mask_bits(&mut self, n: i32) -> Result<(), ErrorStack> {
unsafe {
cvt(ffi::BN_mask_bits(self.0, n.into())).map(|_| ())
}
}
/// Places `self << 1` in `r`.
pub fn lshift1(&self, r: &mut BigNumRef) -> Result<(), ErrorStack> {
unsafe {
cvt(ffi::BN_lshift1(r.0, self.0)).map(|_| ())
}
}
/// Places `self >> 1` in `r`.
pub fn rshift1(&self, r: &mut BigNumRef) -> Result<(), ErrorStack> {
unsafe {
cvt(ffi::BN_rshift1(r.0, self.0)).map(|_| ())
}
}
/// Places `self + b` in `r`.
pub fn add(&self, r: &mut BigNumRef, b: &BigNumRef) -> Result<(), ErrorStack> {
unsafe {
cvt(ffi::BN_add(r.0, self.0, b.0)).map(|_| ())
}
}
/// Places `self - b` in `r`.
pub fn sub(&self, r: &mut BigNumRef, b: &BigNumRef) -> Result<(), ErrorStack> {
unsafe {
cvt(ffi::BN_sub(r.0, self.0, b.0)).map(|_| ())
}
}
/// Places `self << n` in `r`.
pub fn lshift(&self, r: &mut BigNumRef, b: i32) -> Result<(), ErrorStack> {
unsafe {
cvt(ffi::BN_lshift(r.0, self.0, b.into())).map(|_| ())
}
}
/// Places `self >> n` in `r`.
pub fn rshift(&self, r: &mut BigNumRef, n: i32) -> Result<(), ErrorStack> {
unsafe {
cvt(ffi::BN_rshift(r.0, self.0, n.into())).map(|_| ())
}
}
pub fn to_owned(&self) -> Result<BigNum, ErrorStack> {
unsafe {
cvt_p(ffi::BN_dup(self.0)).map(|b| BigNum::from_ptr(b))
}
}
/// Sets the sign of `self`.
pub fn set_negative(&mut self, negative: bool) {
unsafe {
ffi::BN_set_negative(self.0, negative as c_int)
}
}
/// Compare the absolute values of `self` and `oth`.
///
/// ```
/// # use openssl::bn::BigNum;
/// # use std::cmp::Ordering;
/// let s = -BigNum::from_u32(8).unwrap();
/// let o = BigNum::from_u32(8).unwrap();
///
/// assert_eq!(s.ucmp(&o), Ordering::Equal);
/// ```
pub fn ucmp(&self, oth: &BigNumRef) -> Ordering {
unsafe {
let res = ffi::BN_ucmp(self.as_ptr(), oth.as_ptr());
if res < 0 {
Ordering::Less
} else if res > 0 {
Ordering::Greater
} else {
Ordering::Equal
}
}
}
pub fn is_negative(&self) -> bool {
self._is_negative()
}
#[cfg(ossl10x)]
fn _is_negative(&self) -> bool {
unsafe { (*self.as_ptr()).neg == 1 }
}
#[cfg(ossl110)]
fn _is_negative(&self) -> bool {
unsafe { ffi::BN_is_negative(self.as_ptr()) == 1 }
}
/// Returns the number of significant bits in `self`.
pub fn num_bits(&self) -> i32 {
unsafe { ffi::BN_num_bits(self.as_ptr()) as i32 }
}
/// Returns the size of `self` in bytes.
pub fn num_bytes(&self) -> i32 {
(self.num_bits() + 7) / 8
}
pub fn as_ptr(&self) -> *mut ffi::BIGNUM {
self.0
}
/// Returns a big-endian byte vector representation of the absolute value of `self`.
///
/// `self` can be recreated by using `new_from_slice`.
///
/// ```
/// # use openssl::bn::BigNum;
/// let s = -BigNum::from_u32(4543).unwrap();
/// let r = BigNum::from_u32(4543).unwrap();
///
/// let s_vec = s.to_vec();
/// assert_eq!(BigNum::from_slice(&s_vec).unwrap(), r);
/// ```
pub fn to_vec(&self) -> Vec<u8> {
let size = self.num_bytes() as usize;
let mut v = Vec::with_capacity(size);
unsafe {
ffi::BN_bn2bin(self.as_ptr(), v.as_mut_ptr());
v.set_len(size);
}
v
}
/// Returns a decimal string representation of `self`.
///
/// ```
/// # use openssl::bn::BigNum;
/// let s = -BigNum::from_u32(12345).unwrap();
///
/// assert_eq!(s.to_dec_str().unwrap(), "-12345");
/// ```
pub fn to_dec_str(&self) -> Result<String, ErrorStack> {
unsafe {
let buf = try!(cvt_p(ffi::BN_bn2dec(self.as_ptr())));
let str = String::from_utf8(CStr::from_ptr(buf as *const _).to_bytes().to_vec())
.unwrap();
CRYPTO_free!(buf as *mut c_void);
Ok(str)
}
}
/// Returns a hexadecimal string representation of `self`.
///
/// ```
/// # use openssl::bn::BigNum;
/// let s = -BigNum::from_u32(0x99ff).unwrap();
///
/// assert_eq!(s.to_hex_str().unwrap(), "-99FF");
/// ```
pub fn to_hex_str(&self) -> Result<String, ErrorStack> {
unsafe {
let buf = try!(cvt_p(ffi::BN_bn2hex(self.as_ptr())));
let str = String::from_utf8(CStr::from_ptr(buf as *const _).to_bytes().to_vec())
.unwrap();
CRYPTO_free!(buf as *mut c_void);
Ok(str)
}
}
}
/// An owned, signed, arbitrary-precision integer.
///
/// `BigNum` provides wrappers around OpenSSL's checked arithmetic functions.
/// Additionally, it implements the standard operators (`std::ops`), which
/// perform unchecked arithmetic, unwrapping the returned `Result` of the
/// checked operations.
pub struct BigNum(BigNumRef<'static>);
impl BigNum {
/// Creates a new `BigNum` with the value 0.
pub fn new() -> Result<BigNum, ErrorStack> {
unsafe {
ffi::init();
let v = try!(cvt_p(ffi::BN_new()));
Ok(BigNum::from_ptr(v))
}
}
/// Creates a new `BigNum` with the given value.
pub fn from_u32(n: u32) -> Result<BigNum, ErrorStack> {
BigNum::new().and_then(|v| unsafe {
cvt(ffi::BN_set_word(v.as_ptr(), n as ffi::BN_ULONG)).map(|_| v)
})
}
/// Creates a `BigNum` from a decimal string.
pub fn from_dec_str(s: &str) -> Result<BigNum, ErrorStack> {
unsafe {
let c_str = CString::new(s.as_bytes()).unwrap();
let mut bn = ptr::null_mut();
try!(cvt(ffi::BN_dec2bn(&mut bn, c_str.as_ptr() as *const _)));
Ok(BigNum::from_ptr(bn))
}
}
/// Creates a `BigNum` from a hexadecimal string.
pub fn from_hex_str(s: &str) -> Result<BigNum, ErrorStack> {
unsafe {
let c_str = CString::new(s.as_bytes()).unwrap();
let mut bn = ptr::null_mut();
try!(cvt(ffi::BN_hex2bn(&mut bn, c_str.as_ptr() as *const _)));
Ok(BigNum::from_ptr(bn))
}
}
pub unsafe fn from_ptr(handle: *mut ffi::BIGNUM) -> BigNum {
BigNum(BigNumRef::from_ptr(handle))
}
/// Creates a new `BigNum` from an unsigned, big-endian encoded number of arbitrary length.
///
/// ```
/// # use openssl::bn::BigNum;
/// let bignum = BigNum::from_slice(&[0x12, 0x00, 0x34]).unwrap();
///
/// assert_eq!(bignum, BigNum::from_u32(0x120034).unwrap());
/// ```
pub fn from_slice(n: &[u8]) -> Result<BigNum, ErrorStack> {
unsafe {
assert!(n.len() <= c_int::max_value() as usize);
cvt_p(ffi::BN_bin2bn(n.as_ptr(), n.len() as c_int, ptr::null_mut()))
.map(|p| BigNum::from_ptr(p))
}
}
/// Generates a prime number, placing it in `r`.
///
/// # Parameters
///
/// * `bits`: The length of the prime in bits (lower bound).
/// * `safe`: If true, returns a "safe" prime `p` so that `(p-1)/2` is also prime.
/// * `add`/`rem`: If `add` is set to `Some(add)`, `p % add == rem` will hold, where `p` is the
/// generated prime and `rem` is `1` if not specified (`None`).
pub fn generate_prime(r: &mut BigNumRef,
bits: i32,
safe: bool,
add: Option<&BigNumRef>,
rem: Option<&BigNumRef>)
-> Result<(), ErrorStack> {
unsafe {
cvt(ffi::BN_generate_prime_ex(r.0,
bits as c_int,
safe as c_int,
add.map(|n| n.0).unwrap_or(ptr::null_mut()),
rem.map(|n| n.0).unwrap_or(ptr::null_mut()),
ptr::null_mut()))
.map(|_| ())
}
}
}
impl Drop for BigNum {
fn drop(&mut self) {
unsafe { ffi::BN_clear_free(self.as_ptr()); }
}
}
impl Deref for BigNum {
type Target = BigNumRef<'static>;
fn deref(&self) -> &BigNumRef<'static> {
&self.0
}
}
impl DerefMut for BigNum {
fn deref_mut(&mut self) -> &mut BigNumRef<'static> {
&mut self.0
}
}
impl AsRef<BigNumRef<'static>> for BigNum {
fn as_ref(&self) -> &BigNumRef<'static> {
self.deref()
}
}
impl<'a> fmt::Debug for BigNumRef<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self.to_dec_str() {
Ok(s) => f.write_str(&s),
Err(e) => Err(e.into()),
}
}
}
impl fmt::Debug for BigNum {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self.to_dec_str() {
Ok(s) => f.write_str(&s),
Err(e) => Err(e.into()),
}
}
}
impl<'a> fmt::Display for BigNumRef<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self.to_dec_str() {
Ok(s) => f.write_str(&s),
Err(e) => Err(e.into()),
}
}
}
impl fmt::Display for BigNum {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self.to_dec_str() {
Ok(s) => f.write_str(&s),
Err(e) => Err(e.into()),
}
}
}
impl<'a, 'b> PartialEq<BigNumRef<'b>> for BigNumRef<'a> {
fn eq(&self, oth: &BigNumRef) -> bool {
self.cmp(oth) == Ordering::Equal
}
}
impl<'a> PartialEq<BigNum> for BigNumRef<'a> {
fn eq(&self, oth: &BigNum) -> bool {
self.eq(oth.deref())
}
}
impl<'a> Eq for BigNumRef<'a> {}
impl PartialEq for BigNum {
fn eq(&self, oth: &BigNum) -> bool {
self.deref().eq(oth)
}
}
impl<'a> PartialEq<BigNumRef<'a>> for BigNum {
fn eq(&self, oth: &BigNumRef) -> bool {
self.deref().eq(oth)
}
}
impl Eq for BigNum {}
impl<'a, 'b> PartialOrd<BigNumRef<'b>> for BigNumRef<'a> {
fn partial_cmp(&self, oth: &BigNumRef) -> Option<Ordering> {
Some(self.cmp(oth))
}
}
impl<'a> PartialOrd<BigNum> for BigNumRef<'a> {
fn partial_cmp(&self, oth: &BigNum) -> Option<Ordering> {
Some(self.cmp(oth.deref()))
}
}
impl<'a> Ord for BigNumRef<'a> {
fn cmp(&self, oth: &BigNumRef) -> Ordering {
unsafe { ffi::BN_cmp(self.as_ptr(), oth.as_ptr()).cmp(&0) }
}
}
impl PartialOrd for BigNum {
fn partial_cmp(&self, oth: &BigNum) -> Option<Ordering> {
self.deref().partial_cmp(oth.deref())
}
}
impl<'a> PartialOrd<BigNumRef<'a>> for BigNum {
fn partial_cmp(&self, oth: &BigNumRef) -> Option<Ordering> {
self.deref().partial_cmp(oth)
}
}
impl Ord for BigNum {
fn cmp(&self, oth: &BigNum) -> Ordering {
self.deref().cmp(oth.deref())
}
}
macro_rules! delegate {
($t:ident, $m:ident) => {
impl<'a, 'b> $t<&'b BigNum> for &'a BigNumRef<'a> {
type Output = BigNum;
fn $m(self, oth: &BigNum) -> BigNum {
$t::$m(self, oth.deref())
}
}
impl<'a, 'b> $t<&'b BigNumRef<'b>> for &'a BigNum {
type Output = BigNum;
fn $m(self, oth: &BigNumRef) -> BigNum {
$t::$m(self.deref(), oth)
}
}
impl<'a, 'b> $t<&'b BigNum> for &'a BigNum {
type Output = BigNum;
fn $m(self, oth: &BigNum) -> BigNum {
$t::$m(self.deref(), oth.deref())
}
}
}
}
impl<'a, 'b> Add<&'b BigNumRef<'b>> for &'a BigNumRef<'a> {
type Output = BigNum;
fn add(self, oth: &BigNumRef) -> BigNum {
let mut r = BigNum::new().unwrap();
self.add(&mut r, oth).unwrap();
r
}
}
delegate!(Add, add);
impl<'a, 'b> Sub<&'b BigNumRef<'b>> for &'a BigNumRef<'a> {
type Output = BigNum;
fn sub(self, oth: &BigNumRef) -> BigNum {
let mut r = BigNum::new().unwrap();
self.sub(&mut r, oth).unwrap();
r
}
}
delegate!(Sub, sub);
impl<'a, 'b> Mul<&'b BigNumRef<'b>> for &'a BigNumRef<'a> {
type Output = BigNum;
fn mul(self, oth: &BigNumRef) -> BigNum {
let mut ctx = BnCtx::new().unwrap();
let mut r = BigNum::new().unwrap();
ctx.mul(&mut r, self, oth).unwrap();
r
}
}
delegate!(Mul, mul);
impl<'a, 'b> Div<&'b BigNumRef<'b>> for &'a BigNumRef<'a> {
type Output = BigNum;
fn div(self, oth: &'b BigNumRef<'b>) -> BigNum {
let mut ctx = BnCtx::new().unwrap();
let mut dv = BigNum::new().unwrap();
ctx.div(Some(&mut dv), None, self, oth).unwrap();
dv
}
}
delegate!(Div, div);
impl<'a, 'b> Rem<&'b BigNumRef<'b>> for &'a BigNumRef<'a> {
type Output = BigNum;
fn rem(self, oth: &'b BigNumRef<'b>) -> BigNum {
let mut ctx = BnCtx::new().unwrap();
let mut rem = BigNum::new().unwrap();
ctx.div(None, Some(&mut rem), self, oth).unwrap();
rem
}
}
delegate!(Rem, rem);
impl<'a> Shl<i32> for &'a BigNumRef<'a> {
type Output = BigNum;
fn shl(self, n: i32) -> BigNum {
let mut r = BigNum::new().unwrap();
self.lshift(&mut r, n).unwrap();
r
}
}
impl<'a> Shl<i32> for &'a BigNum {
type Output = BigNum;
fn shl(self, n: i32) -> BigNum {
self.deref().shl(n)
}
}
impl<'a> Shr<i32> for &'a BigNumRef<'a> {
type Output = BigNum;
fn shr(self, n: i32) -> BigNum {
let mut r = BigNum::new().unwrap();
self.rshift(&mut r, n).unwrap();
r
}
}
impl<'a> Shr<i32> for &'a BigNum {
type Output = BigNum;
fn shr(self, n: i32) -> BigNum {
self.deref().shl(n)
}
}
impl<'a> Neg for &'a BigNumRef<'a> {
type Output = BigNum;
fn neg(self) -> BigNum {
self.to_owned().unwrap().neg()
}
}
impl<'a> Neg for &'a BigNum {
type Output = BigNum;
fn neg(self) -> BigNum {
self.deref().neg()
}
}
impl Neg for BigNum {
type Output = BigNum;
fn neg(mut self) -> BigNum {
let negative = self.is_negative();
self.set_negative(!negative);
self
}
}
#[cfg(test)]
mod tests {
use bn::{BnCtx, BigNum};
#[test]
fn test_to_from_slice() {
let v0 = BigNum::from_u32(10203004).unwrap();
let vec = v0.to_vec();
let v1 = BigNum::from_slice(&vec).unwrap();
assert!(v0 == v1);
}
#[test]
fn test_negation() {
let a = BigNum::from_u32(909829283).unwrap();
assert!(!a.is_negative());
assert!((-a).is_negative());
}
#[test]
fn test_prime_numbers() {
let a = BigNum::from_u32(19029017).unwrap();
let mut p = BigNum::new().unwrap();
BigNum::generate_prime(&mut p, 128, true, None, Some(&a)).unwrap();
let mut ctx = BnCtx::new().unwrap();
assert!(ctx.is_prime(&p, 100).unwrap());
assert!(ctx.is_prime_fasttest(&p, 100, true).unwrap());
}
}