909 lines
26 KiB
Rust
909 lines
26 KiB
Rust
use ffi;
|
|
use libc::{c_int, c_void};
|
|
use std::cmp::Ordering;
|
|
use std::ffi::{CStr, CString};
|
|
use std::{fmt, ptr};
|
|
use std::marker::PhantomData;
|
|
use std::ops::{Add, Div, Mul, Neg, Rem, Shl, Shr, Sub, Deref, DerefMut};
|
|
|
|
use {cvt, cvt_p, cvt_n};
|
|
use error::ErrorStack;
|
|
|
|
/// Specifies the desired properties of a randomly generated `BigNum`.
|
|
#[derive(Copy, Clone)]
|
|
#[repr(C)]
|
|
pub enum RNGProperty {
|
|
/// The most significant bit of the number is allowed to be 0.
|
|
MsbMaybeZero = -1,
|
|
/// The MSB should be set to 1.
|
|
MsbOne = 0,
|
|
/// The two most significant bits of the number will be set to 1, so that the product of two
|
|
/// such random numbers will always have `2 * bits` length.
|
|
TwoMsbOne = 1,
|
|
}
|
|
|
|
/// A context object for `BigNum` operations.
|
|
pub struct BnCtx(*mut ffi::BN_CTX);
|
|
|
|
impl Drop for BnCtx {
|
|
fn drop(&mut self) {
|
|
unsafe {
|
|
ffi::BN_CTX_free(self.0);
|
|
}
|
|
}
|
|
}
|
|
|
|
impl BnCtx {
|
|
/// Returns a new `BnCtx`.
|
|
pub fn new() -> Result<BnCtx, ErrorStack> {
|
|
unsafe {
|
|
cvt_p(ffi::BN_CTX_new()).map(BnCtx)
|
|
}
|
|
}
|
|
|
|
/// Places the result of `a * b` in `r`.
|
|
pub fn mul(&mut self,
|
|
r: &mut BigNumRef,
|
|
a: &BigNumRef,
|
|
b: &BigNumRef)
|
|
-> Result<(), ErrorStack> {
|
|
unsafe {
|
|
cvt(ffi::BN_mul(r.0, a.0, b.0, self.0)).map(|_| ())
|
|
}
|
|
}
|
|
|
|
/// Places the result of `a / b` in `dv` and `a mod b` in `rem`.
|
|
pub fn div(&mut self,
|
|
dv: Option<&mut BigNumRef>,
|
|
rem: Option<&mut BigNumRef>,
|
|
a: &BigNumRef,
|
|
b: &BigNumRef)
|
|
-> Result<(), ErrorStack> {
|
|
unsafe {
|
|
cvt(ffi::BN_div(dv.map(|b| b.0).unwrap_or(ptr::null_mut()),
|
|
rem.map(|b| b.0).unwrap_or(ptr::null_mut()),
|
|
a.0,
|
|
b.0,
|
|
self.0))
|
|
.map(|_| ())
|
|
}
|
|
}
|
|
|
|
/// Places the result of `a²` in `r`.
|
|
pub fn sqr(&mut self, r: &mut BigNumRef, a: &BigNumRef) -> Result<(), ErrorStack> {
|
|
unsafe {
|
|
cvt(ffi::BN_sqr(r.as_ptr(), a.as_ptr(), self.0)).map(|_| ())
|
|
}
|
|
}
|
|
|
|
/// Places the result of `a mod m` in `r`.
|
|
pub fn nnmod(&mut self,
|
|
r: &mut BigNumRef,
|
|
a: &BigNumRef,
|
|
m: &BigNumRef) -> Result<(), ErrorStack> {
|
|
unsafe {
|
|
cvt(ffi::BN_nnmod(r.as_ptr(), a.as_ptr(), m.as_ptr(), self.0)).map(|_| ())
|
|
}
|
|
}
|
|
|
|
/// Places the result of `(a + b) mod m` in `r`.
|
|
pub fn mod_add(&mut self,
|
|
r: &mut BigNumRef,
|
|
a: &BigNumRef,
|
|
b: &BigNumRef,
|
|
m: &BigNumRef)
|
|
-> Result<(), ErrorStack> {
|
|
unsafe {
|
|
cvt(ffi::BN_mod_add(r.as_ptr(), a.as_ptr(), b.as_ptr(), m.as_ptr(), self.0)).map(|_| ())
|
|
}
|
|
}
|
|
|
|
/// Places the result of `(a - b) mod m` in `r`.
|
|
pub fn mod_sub(&mut self,
|
|
r: &mut BigNumRef,
|
|
a: &BigNumRef,
|
|
b: &BigNumRef,
|
|
m: &BigNumRef)
|
|
-> Result<(), ErrorStack> {
|
|
unsafe {
|
|
cvt(ffi::BN_mod_sub(r.as_ptr(), a.as_ptr(), b.as_ptr(), m.as_ptr(), self.0)).map(|_| ())
|
|
}
|
|
}
|
|
|
|
/// Places the result of `(a * b) mod m` in `r`.
|
|
pub fn mod_mul(&mut self,
|
|
r: &mut BigNumRef,
|
|
a: &BigNumRef,
|
|
b: &BigNumRef,
|
|
m: &BigNumRef)
|
|
-> Result<(), ErrorStack> {
|
|
unsafe {
|
|
cvt(ffi::BN_mod_mul(r.as_ptr(), a.as_ptr(), b.as_ptr(), m.as_ptr(), self.0)).map(|_| ())
|
|
}
|
|
}
|
|
|
|
/// Places the result of `a² mod m` in `r`.
|
|
pub fn mod_sqr(&mut self,
|
|
r: &mut BigNumRef,
|
|
a: &BigNumRef,
|
|
m: &BigNumRef) -> Result<(), ErrorStack> {
|
|
unsafe {
|
|
cvt(ffi::BN_mod_sqr(r.as_ptr(), a.as_ptr(), m.as_ptr(), self.0)).map(|_| ())
|
|
}
|
|
}
|
|
|
|
/// Places the result of `a^p` in `r`.
|
|
pub fn exp(&mut self,
|
|
r: &mut BigNumRef,
|
|
a: &BigNumRef,
|
|
p: &BigNumRef) -> Result<(), ErrorStack> {
|
|
unsafe{
|
|
cvt(ffi::BN_exp(r.as_ptr(), a.as_ptr(), p.as_ptr(), self.0)).map(|_| ())
|
|
}
|
|
}
|
|
|
|
/// Places the result of `a^p mod m` in `r`.
|
|
pub fn mod_exp(&mut self,
|
|
r: &mut BigNumRef,
|
|
a: &BigNumRef,
|
|
p: &BigNumRef,
|
|
m: &BigNumRef) -> Result<(), ErrorStack> {
|
|
unsafe {
|
|
cvt(ffi::BN_mod_exp(r.as_ptr(), a.as_ptr(), p.as_ptr(), m.as_ptr(), self.0)).map(|_| ())
|
|
}
|
|
}
|
|
|
|
/// Places the inverse of `a` modulo `n` in `r`.
|
|
pub fn mod_inverse(&mut self,
|
|
r: &mut BigNumRef,
|
|
a: &BigNumRef,
|
|
n: &BigNumRef) -> Result<(), ErrorStack> {
|
|
unsafe {
|
|
cvt_p(ffi::BN_mod_inverse(r.0, a.0, n.0, self.0)).map(|_| ())
|
|
}
|
|
}
|
|
|
|
/// Places the greatest common denominator of `a` and `b` in `r`.
|
|
pub fn gcd(&mut self,
|
|
r: &mut BigNumRef,
|
|
a: &BigNumRef,
|
|
b: &BigNumRef) -> Result<(), ErrorStack> {
|
|
unsafe {
|
|
cvt(ffi::BN_gcd(r.0, a.0, b.0, self.0)).map(|_| ())
|
|
}
|
|
}
|
|
|
|
/// Checks whether `p` is prime.
|
|
///
|
|
/// Performs a Miller-Rabin probabilistic primality test with `checks` iterations.
|
|
///
|
|
/// Returns `true` if `p` is prime with an error probability of less than `0.25 ^ checks`.
|
|
pub fn is_prime(&mut self, p: &BigNumRef, checks: i32) -> Result<bool, ErrorStack> {
|
|
unsafe {
|
|
cvt_n(ffi::BN_is_prime_ex(p.0, checks.into(), self.0, ptr::null_mut())).map(|r| r != 0)
|
|
}
|
|
}
|
|
|
|
/// Checks whether `p` is prime with optional trial division.
|
|
///
|
|
/// If `do_trial_division` is `true`, first performs trial division by a number of small primes.
|
|
/// Then, like `is_prime`, performs a Miller-Rabin probabilistic primality test with `checks`
|
|
/// iterations.
|
|
///
|
|
/// # Return Value
|
|
///
|
|
/// Returns `true` if `p` is prime with an error probability of less than `0.25 ^ checks`.
|
|
pub fn is_prime_fasttest(&mut self,
|
|
p: &BigNumRef,
|
|
checks: i32,
|
|
do_trial_division: bool) -> Result<bool, ErrorStack> {
|
|
unsafe {
|
|
cvt_n(ffi::BN_is_prime_fasttest_ex(p.0,
|
|
checks.into(),
|
|
self.0,
|
|
do_trial_division as c_int,
|
|
ptr::null_mut()))
|
|
.map(|r| r != 0)
|
|
}
|
|
}
|
|
|
|
/// Generates a cryptographically strong pseudo-random `BigNum`, placing it in `r`.
|
|
///
|
|
/// # Parameters
|
|
///
|
|
/// * `bits`: Length of the number in bits.
|
|
/// * `prop`: The desired properties of the number.
|
|
/// * `odd`: If `true`, the generated number will be odd.
|
|
pub fn rand(r: &mut BigNumRef,
|
|
bits: i32,
|
|
prop: RNGProperty,
|
|
odd: bool)
|
|
-> Result<(), ErrorStack> {
|
|
unsafe {
|
|
cvt(ffi::BN_rand(r.0, bits.into(), prop as c_int, odd as c_int)).map(|_| ())
|
|
}
|
|
}
|
|
|
|
/// The cryptographically weak counterpart to `checked_new_random`.
|
|
pub fn pseudo_rand(r: &mut BigNumRef,
|
|
bits: i32,
|
|
prop: RNGProperty,
|
|
odd: bool)
|
|
-> Result<(), ErrorStack> {
|
|
unsafe {
|
|
cvt(ffi::BN_pseudo_rand(r.0, bits.into(), prop as c_int, odd as c_int)).map(|_| ())
|
|
}
|
|
}
|
|
}
|
|
|
|
/// A borrowed, signed, arbitrary-precision integer.
|
|
#[derive(Copy, Clone)]
|
|
pub struct BigNumRef<'a>(*mut ffi::BIGNUM, PhantomData<&'a ()>);
|
|
|
|
impl<'a> BigNumRef<'a> {
|
|
pub unsafe fn from_ptr(handle: *mut ffi::BIGNUM) -> BigNumRef<'a> {
|
|
BigNumRef(handle, PhantomData)
|
|
}
|
|
|
|
/// Adds a `u32` to `self`.
|
|
pub fn add_word(&mut self, w: u32) -> Result<(), ErrorStack> {
|
|
unsafe {
|
|
cvt(ffi::BN_add_word(self.0, w as ffi::BN_ULONG)).map(|_| ())
|
|
}
|
|
}
|
|
|
|
/// Subtracts a `u32` from `self`.
|
|
pub fn sub_word(&mut self, w: u32) -> Result<(), ErrorStack> {
|
|
unsafe {
|
|
cvt(ffi::BN_sub_word(self.0, w as ffi::BN_ULONG)).map(|_| ())
|
|
}
|
|
}
|
|
|
|
/// Multiplies a `u32` by `self`.
|
|
pub fn mul_word(&mut self, w: u32) -> Result<(), ErrorStack> {
|
|
unsafe {
|
|
cvt(ffi::BN_mul_word(self.0, w as ffi::BN_ULONG)).map(|_| ())
|
|
}
|
|
}
|
|
|
|
/// Divides `self` by a `u32`, returning the remainder.
|
|
pub fn div_word(&mut self, w: u32) -> Result<u64, ErrorStack> {
|
|
unsafe {
|
|
let r = ffi::BN_div_word(self.0, w.into());
|
|
if r == ffi::BN_ULONG::max_value() {
|
|
Err(ErrorStack::get())
|
|
} else {
|
|
Ok(r.into())
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Returns the result of `self` modulo `w`.
|
|
pub fn mod_word(&self, w: u32) -> Result<u64, ErrorStack> {
|
|
unsafe {
|
|
let r = ffi::BN_mod_word(self.0, w.into());
|
|
if r == ffi::BN_ULONG::max_value() {
|
|
Err(ErrorStack::get())
|
|
} else {
|
|
Ok(r.into())
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Places a cryptographically-secure pseudo-random number nonnegative
|
|
/// number less than `self` in `rnd`.
|
|
pub fn rand_in_range(&self, rnd: &mut BigNumRef) -> Result<(), ErrorStack> {
|
|
unsafe {
|
|
cvt(ffi::BN_rand_range(self.0, rnd.0)).map(|_| ())
|
|
}
|
|
}
|
|
|
|
/// The cryptographically weak counterpart to `rand_in_range`.
|
|
pub fn pseudo_rand_in_range(&self, rnd: &mut BigNumRef) -> Result<(), ErrorStack> {
|
|
unsafe {
|
|
cvt(ffi::BN_pseudo_rand_range(self.0, rnd.0)).map(|_| ())
|
|
}
|
|
}
|
|
|
|
/// Sets bit `n`. Equivalent to `self |= (1 << n)`.
|
|
///
|
|
/// When setting a bit outside of `self`, it is expanded.
|
|
pub fn set_bit(&mut self, n: i32) -> Result<(), ErrorStack> {
|
|
unsafe {
|
|
cvt(ffi::BN_set_bit(self.0, n.into())).map(|_| ())
|
|
}
|
|
}
|
|
|
|
/// Clears bit `n`, setting it to 0. Equivalent to `self &= ~(1 << n)`.
|
|
///
|
|
/// When clearing a bit outside of `self`, an error is returned.
|
|
pub fn clear_bit(&mut self, n: i32) -> Result<(), ErrorStack> {
|
|
unsafe {
|
|
cvt(ffi::BN_clear_bit(self.0, n.into())).map(|_| ())
|
|
}
|
|
}
|
|
|
|
/// Returns `true` if the `n`th bit of `self` is set to 1, `false` otherwise.
|
|
pub fn is_bit_set(&self, n: i32) -> bool {
|
|
unsafe {
|
|
ffi::BN_is_bit_set(self.0, n.into()) == 1
|
|
}
|
|
}
|
|
|
|
/// Truncates `self` to the lowest `n` bits.
|
|
///
|
|
/// An error occurs if `self` is already shorter than `n` bits.
|
|
pub fn mask_bits(&mut self, n: i32) -> Result<(), ErrorStack> {
|
|
unsafe {
|
|
cvt(ffi::BN_mask_bits(self.0, n.into())).map(|_| ())
|
|
}
|
|
}
|
|
|
|
/// Places `self << 1` in `r`.
|
|
pub fn lshift1(&self, r: &mut BigNumRef) -> Result<(), ErrorStack> {
|
|
unsafe {
|
|
cvt(ffi::BN_lshift1(r.0, self.0)).map(|_| ())
|
|
}
|
|
}
|
|
|
|
/// Places `self >> 1` in `r`.
|
|
pub fn rshift1(&self, r: &mut BigNumRef) -> Result<(), ErrorStack> {
|
|
unsafe {
|
|
cvt(ffi::BN_rshift1(r.0, self.0)).map(|_| ())
|
|
}
|
|
}
|
|
|
|
/// Places `self + b` in `r`.
|
|
pub fn add(&self, r: &mut BigNumRef, b: &BigNumRef) -> Result<(), ErrorStack> {
|
|
unsafe {
|
|
cvt(ffi::BN_add(r.0, self.0, b.0)).map(|_| ())
|
|
}
|
|
}
|
|
|
|
/// Places `self - b` in `r`.
|
|
pub fn sub(&self, r: &mut BigNumRef, b: &BigNumRef) -> Result<(), ErrorStack> {
|
|
unsafe {
|
|
cvt(ffi::BN_sub(r.0, self.0, b.0)).map(|_| ())
|
|
}
|
|
}
|
|
|
|
/// Places `self << n` in `r`.
|
|
pub fn lshift(&self, r: &mut BigNumRef, b: i32) -> Result<(), ErrorStack> {
|
|
unsafe {
|
|
cvt(ffi::BN_lshift(r.0, self.0, b.into())).map(|_| ())
|
|
}
|
|
}
|
|
|
|
/// Places `self >> n` in `r`.
|
|
pub fn rshift(&self, r: &mut BigNumRef, n: i32) -> Result<(), ErrorStack> {
|
|
unsafe {
|
|
cvt(ffi::BN_rshift(r.0, self.0, n.into())).map(|_| ())
|
|
}
|
|
}
|
|
|
|
pub fn to_owned(&self) -> Result<BigNum, ErrorStack> {
|
|
unsafe {
|
|
cvt_p(ffi::BN_dup(self.0)).map(|b| BigNum::from_ptr(b))
|
|
}
|
|
}
|
|
|
|
/// Sets the sign of `self`.
|
|
pub fn set_negative(&mut self, negative: bool) {
|
|
unsafe {
|
|
ffi::BN_set_negative(self.0, negative as c_int)
|
|
}
|
|
}
|
|
|
|
/// Compare the absolute values of `self` and `oth`.
|
|
///
|
|
/// ```
|
|
/// # use openssl::bn::BigNum;
|
|
/// # use std::cmp::Ordering;
|
|
/// let s = -BigNum::from_u32(8).unwrap();
|
|
/// let o = BigNum::from_u32(8).unwrap();
|
|
///
|
|
/// assert_eq!(s.ucmp(&o), Ordering::Equal);
|
|
/// ```
|
|
pub fn ucmp(&self, oth: &BigNumRef) -> Ordering {
|
|
unsafe {
|
|
let res = ffi::BN_ucmp(self.as_ptr(), oth.as_ptr());
|
|
if res < 0 {
|
|
Ordering::Less
|
|
} else if res > 0 {
|
|
Ordering::Greater
|
|
} else {
|
|
Ordering::Equal
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn is_negative(&self) -> bool {
|
|
self._is_negative()
|
|
}
|
|
|
|
#[cfg(ossl10x)]
|
|
fn _is_negative(&self) -> bool {
|
|
unsafe { (*self.as_ptr()).neg == 1 }
|
|
}
|
|
|
|
#[cfg(ossl110)]
|
|
fn _is_negative(&self) -> bool {
|
|
unsafe { ffi::BN_is_negative(self.as_ptr()) == 1 }
|
|
}
|
|
|
|
/// Returns the number of significant bits in `self`.
|
|
pub fn num_bits(&self) -> i32 {
|
|
unsafe { ffi::BN_num_bits(self.as_ptr()) as i32 }
|
|
}
|
|
|
|
/// Returns the size of `self` in bytes.
|
|
pub fn num_bytes(&self) -> i32 {
|
|
(self.num_bits() + 7) / 8
|
|
}
|
|
|
|
pub fn as_ptr(&self) -> *mut ffi::BIGNUM {
|
|
self.0
|
|
}
|
|
|
|
/// Returns a big-endian byte vector representation of the absolute value of `self`.
|
|
///
|
|
/// `self` can be recreated by using `new_from_slice`.
|
|
///
|
|
/// ```
|
|
/// # use openssl::bn::BigNum;
|
|
/// let s = -BigNum::from_u32(4543).unwrap();
|
|
/// let r = BigNum::from_u32(4543).unwrap();
|
|
///
|
|
/// let s_vec = s.to_vec();
|
|
/// assert_eq!(BigNum::from_slice(&s_vec).unwrap(), r);
|
|
/// ```
|
|
pub fn to_vec(&self) -> Vec<u8> {
|
|
let size = self.num_bytes() as usize;
|
|
let mut v = Vec::with_capacity(size);
|
|
unsafe {
|
|
ffi::BN_bn2bin(self.as_ptr(), v.as_mut_ptr());
|
|
v.set_len(size);
|
|
}
|
|
v
|
|
}
|
|
|
|
/// Returns a decimal string representation of `self`.
|
|
///
|
|
/// ```
|
|
/// # use openssl::bn::BigNum;
|
|
/// let s = -BigNum::from_u32(12345).unwrap();
|
|
///
|
|
/// assert_eq!(s.to_dec_str().unwrap(), "-12345");
|
|
/// ```
|
|
pub fn to_dec_str(&self) -> Result<String, ErrorStack> {
|
|
unsafe {
|
|
let buf = try!(cvt_p(ffi::BN_bn2dec(self.as_ptr())));
|
|
let str = String::from_utf8(CStr::from_ptr(buf as *const _).to_bytes().to_vec())
|
|
.unwrap();
|
|
CRYPTO_free!(buf as *mut c_void);
|
|
Ok(str)
|
|
}
|
|
}
|
|
|
|
/// Returns a hexadecimal string representation of `self`.
|
|
///
|
|
/// ```
|
|
/// # use openssl::bn::BigNum;
|
|
/// let s = -BigNum::from_u32(0x99ff).unwrap();
|
|
///
|
|
/// assert_eq!(s.to_hex_str().unwrap(), "-99FF");
|
|
/// ```
|
|
pub fn to_hex_str(&self) -> Result<String, ErrorStack> {
|
|
unsafe {
|
|
let buf = try!(cvt_p(ffi::BN_bn2hex(self.as_ptr())));
|
|
let str = String::from_utf8(CStr::from_ptr(buf as *const _).to_bytes().to_vec())
|
|
.unwrap();
|
|
CRYPTO_free!(buf as *mut c_void);
|
|
Ok(str)
|
|
}
|
|
}
|
|
}
|
|
|
|
/// An owned, signed, arbitrary-precision integer.
|
|
///
|
|
/// `BigNum` provides wrappers around OpenSSL's checked arithmetic functions.
|
|
/// Additionally, it implements the standard operators (`std::ops`), which
|
|
/// perform unchecked arithmetic, unwrapping the returned `Result` of the
|
|
/// checked operations.
|
|
pub struct BigNum(BigNumRef<'static>);
|
|
|
|
impl BigNum {
|
|
/// Creates a new `BigNum` with the value 0.
|
|
pub fn new() -> Result<BigNum, ErrorStack> {
|
|
unsafe {
|
|
ffi::init();
|
|
let v = try!(cvt_p(ffi::BN_new()));
|
|
Ok(BigNum::from_ptr(v))
|
|
}
|
|
}
|
|
|
|
/// Creates a new `BigNum` with the given value.
|
|
pub fn from_u32(n: u32) -> Result<BigNum, ErrorStack> {
|
|
BigNum::new().and_then(|v| unsafe {
|
|
cvt(ffi::BN_set_word(v.as_ptr(), n as ffi::BN_ULONG)).map(|_| v)
|
|
})
|
|
}
|
|
|
|
/// Creates a `BigNum` from a decimal string.
|
|
pub fn from_dec_str(s: &str) -> Result<BigNum, ErrorStack> {
|
|
unsafe {
|
|
let c_str = CString::new(s.as_bytes()).unwrap();
|
|
let mut bn = ptr::null_mut();
|
|
try!(cvt(ffi::BN_dec2bn(&mut bn, c_str.as_ptr() as *const _)));
|
|
Ok(BigNum::from_ptr(bn))
|
|
}
|
|
}
|
|
|
|
/// Creates a `BigNum` from a hexadecimal string.
|
|
pub fn from_hex_str(s: &str) -> Result<BigNum, ErrorStack> {
|
|
unsafe {
|
|
let c_str = CString::new(s.as_bytes()).unwrap();
|
|
let mut bn = ptr::null_mut();
|
|
try!(cvt(ffi::BN_hex2bn(&mut bn, c_str.as_ptr() as *const _)));
|
|
Ok(BigNum::from_ptr(bn))
|
|
}
|
|
}
|
|
|
|
pub unsafe fn from_ptr(handle: *mut ffi::BIGNUM) -> BigNum {
|
|
BigNum(BigNumRef::from_ptr(handle))
|
|
}
|
|
|
|
/// Creates a new `BigNum` from an unsigned, big-endian encoded number of arbitrary length.
|
|
///
|
|
/// ```
|
|
/// # use openssl::bn::BigNum;
|
|
/// let bignum = BigNum::from_slice(&[0x12, 0x00, 0x34]).unwrap();
|
|
///
|
|
/// assert_eq!(bignum, BigNum::from_u32(0x120034).unwrap());
|
|
/// ```
|
|
pub fn from_slice(n: &[u8]) -> Result<BigNum, ErrorStack> {
|
|
unsafe {
|
|
assert!(n.len() <= c_int::max_value() as usize);
|
|
cvt_p(ffi::BN_bin2bn(n.as_ptr(), n.len() as c_int, ptr::null_mut()))
|
|
.map(|p| BigNum::from_ptr(p))
|
|
}
|
|
}
|
|
|
|
/// Generates a prime number, placing it in `r`.
|
|
///
|
|
/// # Parameters
|
|
///
|
|
/// * `bits`: The length of the prime in bits (lower bound).
|
|
/// * `safe`: If true, returns a "safe" prime `p` so that `(p-1)/2` is also prime.
|
|
/// * `add`/`rem`: If `add` is set to `Some(add)`, `p % add == rem` will hold, where `p` is the
|
|
/// generated prime and `rem` is `1` if not specified (`None`).
|
|
pub fn generate_prime(r: &mut BigNumRef,
|
|
bits: i32,
|
|
safe: bool,
|
|
add: Option<&BigNumRef>,
|
|
rem: Option<&BigNumRef>)
|
|
-> Result<(), ErrorStack> {
|
|
unsafe {
|
|
cvt(ffi::BN_generate_prime_ex(r.0,
|
|
bits as c_int,
|
|
safe as c_int,
|
|
add.map(|n| n.0).unwrap_or(ptr::null_mut()),
|
|
rem.map(|n| n.0).unwrap_or(ptr::null_mut()),
|
|
ptr::null_mut()))
|
|
.map(|_| ())
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Drop for BigNum {
|
|
fn drop(&mut self) {
|
|
unsafe { ffi::BN_clear_free(self.as_ptr()); }
|
|
}
|
|
}
|
|
|
|
impl Deref for BigNum {
|
|
type Target = BigNumRef<'static>;
|
|
|
|
fn deref(&self) -> &BigNumRef<'static> {
|
|
&self.0
|
|
}
|
|
}
|
|
|
|
impl DerefMut for BigNum {
|
|
fn deref_mut(&mut self) -> &mut BigNumRef<'static> {
|
|
&mut self.0
|
|
}
|
|
}
|
|
|
|
impl AsRef<BigNumRef<'static>> for BigNum {
|
|
fn as_ref(&self) -> &BigNumRef<'static> {
|
|
self.deref()
|
|
}
|
|
}
|
|
|
|
impl<'a> fmt::Debug for BigNumRef<'a> {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
match self.to_dec_str() {
|
|
Ok(s) => f.write_str(&s),
|
|
Err(e) => Err(e.into()),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl fmt::Debug for BigNum {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
match self.to_dec_str() {
|
|
Ok(s) => f.write_str(&s),
|
|
Err(e) => Err(e.into()),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a> fmt::Display for BigNumRef<'a> {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
match self.to_dec_str() {
|
|
Ok(s) => f.write_str(&s),
|
|
Err(e) => Err(e.into()),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl fmt::Display for BigNum {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
match self.to_dec_str() {
|
|
Ok(s) => f.write_str(&s),
|
|
Err(e) => Err(e.into()),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a, 'b> PartialEq<BigNumRef<'b>> for BigNumRef<'a> {
|
|
fn eq(&self, oth: &BigNumRef) -> bool {
|
|
self.cmp(oth) == Ordering::Equal
|
|
}
|
|
}
|
|
|
|
impl<'a> PartialEq<BigNum> for BigNumRef<'a> {
|
|
fn eq(&self, oth: &BigNum) -> bool {
|
|
self.eq(oth.deref())
|
|
}
|
|
}
|
|
|
|
impl<'a> Eq for BigNumRef<'a> {}
|
|
|
|
impl PartialEq for BigNum {
|
|
fn eq(&self, oth: &BigNum) -> bool {
|
|
self.deref().eq(oth)
|
|
}
|
|
}
|
|
|
|
impl<'a> PartialEq<BigNumRef<'a>> for BigNum {
|
|
fn eq(&self, oth: &BigNumRef) -> bool {
|
|
self.deref().eq(oth)
|
|
}
|
|
}
|
|
|
|
impl Eq for BigNum {}
|
|
|
|
impl<'a, 'b> PartialOrd<BigNumRef<'b>> for BigNumRef<'a> {
|
|
fn partial_cmp(&self, oth: &BigNumRef) -> Option<Ordering> {
|
|
Some(self.cmp(oth))
|
|
}
|
|
}
|
|
|
|
impl<'a> PartialOrd<BigNum> for BigNumRef<'a> {
|
|
fn partial_cmp(&self, oth: &BigNum) -> Option<Ordering> {
|
|
Some(self.cmp(oth.deref()))
|
|
}
|
|
}
|
|
|
|
impl<'a> Ord for BigNumRef<'a> {
|
|
fn cmp(&self, oth: &BigNumRef) -> Ordering {
|
|
unsafe { ffi::BN_cmp(self.as_ptr(), oth.as_ptr()).cmp(&0) }
|
|
}
|
|
}
|
|
|
|
impl PartialOrd for BigNum {
|
|
fn partial_cmp(&self, oth: &BigNum) -> Option<Ordering> {
|
|
self.deref().partial_cmp(oth.deref())
|
|
}
|
|
}
|
|
|
|
impl<'a> PartialOrd<BigNumRef<'a>> for BigNum {
|
|
fn partial_cmp(&self, oth: &BigNumRef) -> Option<Ordering> {
|
|
self.deref().partial_cmp(oth)
|
|
}
|
|
}
|
|
|
|
impl Ord for BigNum {
|
|
fn cmp(&self, oth: &BigNum) -> Ordering {
|
|
self.deref().cmp(oth.deref())
|
|
}
|
|
}
|
|
|
|
macro_rules! delegate {
|
|
($t:ident, $m:ident) => {
|
|
impl<'a, 'b> $t<&'b BigNum> for &'a BigNumRef<'a> {
|
|
type Output = BigNum;
|
|
|
|
fn $m(self, oth: &BigNum) -> BigNum {
|
|
$t::$m(self, oth.deref())
|
|
}
|
|
}
|
|
|
|
impl<'a, 'b> $t<&'b BigNumRef<'b>> for &'a BigNum {
|
|
type Output = BigNum;
|
|
|
|
fn $m(self, oth: &BigNumRef) -> BigNum {
|
|
$t::$m(self.deref(), oth)
|
|
}
|
|
}
|
|
|
|
impl<'a, 'b> $t<&'b BigNum> for &'a BigNum {
|
|
type Output = BigNum;
|
|
|
|
fn $m(self, oth: &BigNum) -> BigNum {
|
|
$t::$m(self.deref(), oth.deref())
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a, 'b> Add<&'b BigNumRef<'b>> for &'a BigNumRef<'a> {
|
|
type Output = BigNum;
|
|
|
|
fn add(self, oth: &BigNumRef) -> BigNum {
|
|
let mut r = BigNum::new().unwrap();
|
|
self.add(&mut r, oth).unwrap();
|
|
r
|
|
}
|
|
}
|
|
|
|
delegate!(Add, add);
|
|
|
|
impl<'a, 'b> Sub<&'b BigNumRef<'b>> for &'a BigNumRef<'a> {
|
|
type Output = BigNum;
|
|
|
|
fn sub(self, oth: &BigNumRef) -> BigNum {
|
|
let mut r = BigNum::new().unwrap();
|
|
self.sub(&mut r, oth).unwrap();
|
|
r
|
|
}
|
|
}
|
|
|
|
delegate!(Sub, sub);
|
|
|
|
impl<'a, 'b> Mul<&'b BigNumRef<'b>> for &'a BigNumRef<'a> {
|
|
type Output = BigNum;
|
|
|
|
fn mul(self, oth: &BigNumRef) -> BigNum {
|
|
let mut ctx = BnCtx::new().unwrap();
|
|
let mut r = BigNum::new().unwrap();
|
|
ctx.mul(&mut r, self, oth).unwrap();
|
|
r
|
|
}
|
|
}
|
|
|
|
delegate!(Mul, mul);
|
|
|
|
impl<'a, 'b> Div<&'b BigNumRef<'b>> for &'a BigNumRef<'a> {
|
|
type Output = BigNum;
|
|
|
|
fn div(self, oth: &'b BigNumRef<'b>) -> BigNum {
|
|
let mut ctx = BnCtx::new().unwrap();
|
|
let mut dv = BigNum::new().unwrap();
|
|
ctx.div(Some(&mut dv), None, self, oth).unwrap();
|
|
dv
|
|
}
|
|
}
|
|
|
|
delegate!(Div, div);
|
|
|
|
impl<'a, 'b> Rem<&'b BigNumRef<'b>> for &'a BigNumRef<'a> {
|
|
type Output = BigNum;
|
|
|
|
fn rem(self, oth: &'b BigNumRef<'b>) -> BigNum {
|
|
let mut ctx = BnCtx::new().unwrap();
|
|
let mut rem = BigNum::new().unwrap();
|
|
ctx.div(None, Some(&mut rem), self, oth).unwrap();
|
|
rem
|
|
}
|
|
}
|
|
|
|
delegate!(Rem, rem);
|
|
|
|
impl<'a> Shl<i32> for &'a BigNumRef<'a> {
|
|
type Output = BigNum;
|
|
|
|
fn shl(self, n: i32) -> BigNum {
|
|
let mut r = BigNum::new().unwrap();
|
|
self.lshift(&mut r, n).unwrap();
|
|
r
|
|
}
|
|
}
|
|
|
|
impl<'a> Shl<i32> for &'a BigNum {
|
|
type Output = BigNum;
|
|
|
|
fn shl(self, n: i32) -> BigNum {
|
|
self.deref().shl(n)
|
|
}
|
|
}
|
|
|
|
impl<'a> Shr<i32> for &'a BigNumRef<'a> {
|
|
type Output = BigNum;
|
|
|
|
fn shr(self, n: i32) -> BigNum {
|
|
let mut r = BigNum::new().unwrap();
|
|
self.rshift(&mut r, n).unwrap();
|
|
r
|
|
}
|
|
}
|
|
|
|
impl<'a> Shr<i32> for &'a BigNum {
|
|
type Output = BigNum;
|
|
|
|
fn shr(self, n: i32) -> BigNum {
|
|
self.deref().shl(n)
|
|
}
|
|
}
|
|
|
|
impl<'a> Neg for &'a BigNumRef<'a> {
|
|
type Output = BigNum;
|
|
|
|
fn neg(self) -> BigNum {
|
|
self.to_owned().unwrap().neg()
|
|
}
|
|
}
|
|
|
|
impl<'a> Neg for &'a BigNum {
|
|
type Output = BigNum;
|
|
|
|
fn neg(self) -> BigNum {
|
|
self.deref().neg()
|
|
}
|
|
}
|
|
|
|
impl Neg for BigNum {
|
|
type Output = BigNum;
|
|
|
|
fn neg(mut self) -> BigNum {
|
|
let negative = self.is_negative();
|
|
self.set_negative(!negative);
|
|
self
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use bn::{BnCtx, BigNum};
|
|
|
|
#[test]
|
|
fn test_to_from_slice() {
|
|
let v0 = BigNum::from_u32(10203004).unwrap();
|
|
let vec = v0.to_vec();
|
|
let v1 = BigNum::from_slice(&vec).unwrap();
|
|
|
|
assert!(v0 == v1);
|
|
}
|
|
|
|
#[test]
|
|
fn test_negation() {
|
|
let a = BigNum::from_u32(909829283).unwrap();
|
|
|
|
assert!(!a.is_negative());
|
|
assert!((-a).is_negative());
|
|
}
|
|
|
|
#[test]
|
|
fn test_prime_numbers() {
|
|
let a = BigNum::from_u32(19029017).unwrap();
|
|
let mut p = BigNum::new().unwrap();
|
|
BigNum::generate_prime(&mut p, 128, true, None, Some(&a)).unwrap();
|
|
|
|
let mut ctx = BnCtx::new().unwrap();
|
|
assert!(ctx.is_prime(&p, 100).unwrap());
|
|
assert!(ctx.is_prime_fasttest(&p, 100, true).unwrap());
|
|
}
|
|
}
|