use ffi; use libc::{c_int, c_void}; use std::cmp::Ordering; use std::ffi::{CStr, CString}; use std::{fmt, ptr}; use std::marker::PhantomData; use std::ops::{Add, Div, Mul, Neg, Rem, Shl, Shr, Sub, Deref, DerefMut}; use {cvt, cvt_p, cvt_n}; use error::ErrorStack; /// Specifies the desired properties of a randomly generated `BigNum`. #[derive(Copy, Clone)] #[repr(C)] pub enum RNGProperty { /// The most significant bit of the number is allowed to be 0. MsbMaybeZero = -1, /// The MSB should be set to 1. MsbOne = 0, /// The two most significant bits of the number will be set to 1, so that the product of two /// such random numbers will always have `2 * bits` length. TwoMsbOne = 1, } /// A context object for `BigNum` operations. pub struct BnCtx(*mut ffi::BN_CTX); impl Drop for BnCtx { fn drop(&mut self) { unsafe { ffi::BN_CTX_free(self.0); } } } impl BnCtx { /// Returns a new `BnCtx`. pub fn new() -> Result { unsafe { cvt_p(ffi::BN_CTX_new()).map(BnCtx) } } /// Places the result of `a * b` in `r`. pub fn mul(&mut self, r: &mut BigNumRef, a: &BigNumRef, b: &BigNumRef) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_mul(r.0, a.0, b.0, self.0)).map(|_| ()) } } /// Places the result of `a / b` in `dv` and `a mod b` in `rem`. pub fn div(&mut self, dv: Option<&mut BigNumRef>, rem: Option<&mut BigNumRef>, a: &BigNumRef, b: &BigNumRef) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_div(dv.map(|b| b.0).unwrap_or(ptr::null_mut()), rem.map(|b| b.0).unwrap_or(ptr::null_mut()), a.0, b.0, self.0)) .map(|_| ()) } } /// Places the result of `a²` in `r`. pub fn sqr(&mut self, r: &mut BigNumRef, a: &BigNumRef) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_sqr(r.as_ptr(), a.as_ptr(), self.0)).map(|_| ()) } } /// Places the result of `a mod m` in `r`. pub fn nnmod(&mut self, r: &mut BigNumRef, a: &BigNumRef, m: &BigNumRef) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_nnmod(r.as_ptr(), a.as_ptr(), m.as_ptr(), self.0)).map(|_| ()) } } /// Places the result of `(a + b) mod m` in `r`. pub fn mod_add(&mut self, r: &mut BigNumRef, a: &BigNumRef, b: &BigNumRef, m: &BigNumRef) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_mod_add(r.as_ptr(), a.as_ptr(), b.as_ptr(), m.as_ptr(), self.0)).map(|_| ()) } } /// Places the result of `(a - b) mod m` in `r`. pub fn mod_sub(&mut self, r: &mut BigNumRef, a: &BigNumRef, b: &BigNumRef, m: &BigNumRef) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_mod_sub(r.as_ptr(), a.as_ptr(), b.as_ptr(), m.as_ptr(), self.0)).map(|_| ()) } } /// Places the result of `(a * b) mod m` in `r`. pub fn mod_mul(&mut self, r: &mut BigNumRef, a: &BigNumRef, b: &BigNumRef, m: &BigNumRef) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_mod_mul(r.as_ptr(), a.as_ptr(), b.as_ptr(), m.as_ptr(), self.0)).map(|_| ()) } } /// Places the result of `a² mod m` in `r`. pub fn mod_sqr(&mut self, r: &mut BigNumRef, a: &BigNumRef, m: &BigNumRef) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_mod_sqr(r.as_ptr(), a.as_ptr(), m.as_ptr(), self.0)).map(|_| ()) } } /// Places the result of `a^p` in `r`. pub fn exp(&mut self, r: &mut BigNumRef, a: &BigNumRef, p: &BigNumRef) -> Result<(), ErrorStack> { unsafe{ cvt(ffi::BN_exp(r.as_ptr(), a.as_ptr(), p.as_ptr(), self.0)).map(|_| ()) } } /// Places the result of `a^p mod m` in `r`. pub fn mod_exp(&mut self, r: &mut BigNumRef, a: &BigNumRef, p: &BigNumRef, m: &BigNumRef) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_mod_exp(r.as_ptr(), a.as_ptr(), p.as_ptr(), m.as_ptr(), self.0)).map(|_| ()) } } /// Places the inverse of `a` modulo `n` in `r`. pub fn mod_inverse(&mut self, r: &mut BigNumRef, a: &BigNumRef, n: &BigNumRef) -> Result<(), ErrorStack> { unsafe { cvt_p(ffi::BN_mod_inverse(r.0, a.0, n.0, self.0)).map(|_| ()) } } /// Places the greatest common denominator of `a` and `b` in `r`. pub fn gcd(&mut self, r: &mut BigNumRef, a: &BigNumRef, b: &BigNumRef) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_gcd(r.0, a.0, b.0, self.0)).map(|_| ()) } } /// Checks whether `p` is prime. /// /// Performs a Miller-Rabin probabilistic primality test with `checks` iterations. /// /// Returns `true` if `p` is prime with an error probability of less than `0.25 ^ checks`. pub fn is_prime(&mut self, p: &BigNumRef, checks: i32) -> Result { unsafe { cvt_n(ffi::BN_is_prime_ex(p.0, checks.into(), self.0, ptr::null_mut())).map(|r| r != 0) } } /// Checks whether `p` is prime with optional trial division. /// /// If `do_trial_division` is `true`, first performs trial division by a number of small primes. /// Then, like `is_prime`, performs a Miller-Rabin probabilistic primality test with `checks` /// iterations. /// /// # Return Value /// /// Returns `true` if `p` is prime with an error probability of less than `0.25 ^ checks`. pub fn is_prime_fasttest(&mut self, p: &BigNumRef, checks: i32, do_trial_division: bool) -> Result { unsafe { cvt_n(ffi::BN_is_prime_fasttest_ex(p.0, checks.into(), self.0, do_trial_division as c_int, ptr::null_mut())) .map(|r| r != 0) } } /// Generates a cryptographically strong pseudo-random `BigNum`, placing it in `r`. /// /// # Parameters /// /// * `bits`: Length of the number in bits. /// * `prop`: The desired properties of the number. /// * `odd`: If `true`, the generated number will be odd. pub fn rand(r: &mut BigNumRef, bits: i32, prop: RNGProperty, odd: bool) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_rand(r.0, bits.into(), prop as c_int, odd as c_int)).map(|_| ()) } } /// The cryptographically weak counterpart to `checked_new_random`. pub fn pseudo_rand(r: &mut BigNumRef, bits: i32, prop: RNGProperty, odd: bool) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_pseudo_rand(r.0, bits.into(), prop as c_int, odd as c_int)).map(|_| ()) } } } /// A borrowed, signed, arbitrary-precision integer. #[derive(Copy, Clone)] pub struct BigNumRef<'a>(*mut ffi::BIGNUM, PhantomData<&'a ()>); impl<'a> BigNumRef<'a> { pub unsafe fn from_ptr(handle: *mut ffi::BIGNUM) -> BigNumRef<'a> { BigNumRef(handle, PhantomData) } /// Adds a `u32` to `self`. pub fn add_word(&mut self, w: u32) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_add_word(self.0, w as ffi::BN_ULONG)).map(|_| ()) } } /// Subtracts a `u32` from `self`. pub fn sub_word(&mut self, w: u32) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_sub_word(self.0, w as ffi::BN_ULONG)).map(|_| ()) } } /// Multiplies a `u32` by `self`. pub fn mul_word(&mut self, w: u32) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_mul_word(self.0, w as ffi::BN_ULONG)).map(|_| ()) } } /// Divides `self` by a `u32`, returning the remainder. pub fn div_word(&mut self, w: u32) -> Result { unsafe { let r = ffi::BN_div_word(self.0, w.into()); if r == ffi::BN_ULONG::max_value() { Err(ErrorStack::get()) } else { Ok(r.into()) } } } /// Returns the result of `self` modulo `w`. pub fn mod_word(&self, w: u32) -> Result { unsafe { let r = ffi::BN_mod_word(self.0, w.into()); if r == ffi::BN_ULONG::max_value() { Err(ErrorStack::get()) } else { Ok(r.into()) } } } /// Places a cryptographically-secure pseudo-random number nonnegative /// number less than `self` in `rnd`. pub fn rand_in_range(&self, rnd: &mut BigNumRef) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_rand_range(self.0, rnd.0)).map(|_| ()) } } /// The cryptographically weak counterpart to `rand_in_range`. pub fn pseudo_rand_in_range(&self, rnd: &mut BigNumRef) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_pseudo_rand_range(self.0, rnd.0)).map(|_| ()) } } /// Sets bit `n`. Equivalent to `self |= (1 << n)`. /// /// When setting a bit outside of `self`, it is expanded. pub fn set_bit(&mut self, n: i32) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_set_bit(self.0, n.into())).map(|_| ()) } } /// Clears bit `n`, setting it to 0. Equivalent to `self &= ~(1 << n)`. /// /// When clearing a bit outside of `self`, an error is returned. pub fn clear_bit(&mut self, n: i32) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_clear_bit(self.0, n.into())).map(|_| ()) } } /// Returns `true` if the `n`th bit of `self` is set to 1, `false` otherwise. pub fn is_bit_set(&self, n: i32) -> bool { unsafe { ffi::BN_is_bit_set(self.0, n.into()) == 1 } } /// Truncates `self` to the lowest `n` bits. /// /// An error occurs if `self` is already shorter than `n` bits. pub fn mask_bits(&mut self, n: i32) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_mask_bits(self.0, n.into())).map(|_| ()) } } /// Places `self << 1` in `r`. pub fn lshift1(&self, r: &mut BigNumRef) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_lshift1(r.0, self.0)).map(|_| ()) } } /// Places `self >> 1` in `r`. pub fn rshift1(&self, r: &mut BigNumRef) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_rshift1(r.0, self.0)).map(|_| ()) } } /// Places `self + b` in `r`. pub fn add(&self, r: &mut BigNumRef, b: &BigNumRef) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_add(r.0, self.0, b.0)).map(|_| ()) } } /// Places `self - b` in `r`. pub fn sub(&self, r: &mut BigNumRef, b: &BigNumRef) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_sub(r.0, self.0, b.0)).map(|_| ()) } } /// Places `self << n` in `r`. pub fn lshift(&self, r: &mut BigNumRef, b: i32) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_lshift(r.0, self.0, b.into())).map(|_| ()) } } /// Places `self >> n` in `r`. pub fn rshift(&self, r: &mut BigNumRef, n: i32) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_rshift(r.0, self.0, n.into())).map(|_| ()) } } pub fn to_owned(&self) -> Result { unsafe { cvt_p(ffi::BN_dup(self.0)).map(|b| BigNum::from_ptr(b)) } } /// Sets the sign of `self`. pub fn set_negative(&mut self, negative: bool) { unsafe { ffi::BN_set_negative(self.0, negative as c_int) } } /// Compare the absolute values of `self` and `oth`. /// /// ``` /// # use openssl::bn::BigNum; /// # use std::cmp::Ordering; /// let s = -BigNum::from_u32(8).unwrap(); /// let o = BigNum::from_u32(8).unwrap(); /// /// assert_eq!(s.ucmp(&o), Ordering::Equal); /// ``` pub fn ucmp(&self, oth: &BigNumRef) -> Ordering { unsafe { let res = ffi::BN_ucmp(self.as_ptr(), oth.as_ptr()); if res < 0 { Ordering::Less } else if res > 0 { Ordering::Greater } else { Ordering::Equal } } } pub fn is_negative(&self) -> bool { self._is_negative() } #[cfg(ossl10x)] fn _is_negative(&self) -> bool { unsafe { (*self.as_ptr()).neg == 1 } } #[cfg(ossl110)] fn _is_negative(&self) -> bool { unsafe { ffi::BN_is_negative(self.as_ptr()) == 1 } } /// Returns the number of significant bits in `self`. pub fn num_bits(&self) -> i32 { unsafe { ffi::BN_num_bits(self.as_ptr()) as i32 } } /// Returns the size of `self` in bytes. pub fn num_bytes(&self) -> i32 { (self.num_bits() + 7) / 8 } pub fn as_ptr(&self) -> *mut ffi::BIGNUM { self.0 } /// Returns a big-endian byte vector representation of the absolute value of `self`. /// /// `self` can be recreated by using `new_from_slice`. /// /// ``` /// # use openssl::bn::BigNum; /// let s = -BigNum::from_u32(4543).unwrap(); /// let r = BigNum::from_u32(4543).unwrap(); /// /// let s_vec = s.to_vec(); /// assert_eq!(BigNum::from_slice(&s_vec).unwrap(), r); /// ``` pub fn to_vec(&self) -> Vec { let size = self.num_bytes() as usize; let mut v = Vec::with_capacity(size); unsafe { ffi::BN_bn2bin(self.as_ptr(), v.as_mut_ptr()); v.set_len(size); } v } /// Returns a decimal string representation of `self`. /// /// ``` /// # use openssl::bn::BigNum; /// let s = -BigNum::from_u32(12345).unwrap(); /// /// assert_eq!(s.to_dec_str().unwrap(), "-12345"); /// ``` pub fn to_dec_str(&self) -> Result { unsafe { let buf = try!(cvt_p(ffi::BN_bn2dec(self.as_ptr()))); let str = String::from_utf8(CStr::from_ptr(buf as *const _).to_bytes().to_vec()) .unwrap(); CRYPTO_free!(buf as *mut c_void); Ok(str) } } /// Returns a hexadecimal string representation of `self`. /// /// ``` /// # use openssl::bn::BigNum; /// let s = -BigNum::from_u32(0x99ff).unwrap(); /// /// assert_eq!(s.to_hex_str().unwrap(), "-99FF"); /// ``` pub fn to_hex_str(&self) -> Result { unsafe { let buf = try!(cvt_p(ffi::BN_bn2hex(self.as_ptr()))); let str = String::from_utf8(CStr::from_ptr(buf as *const _).to_bytes().to_vec()) .unwrap(); CRYPTO_free!(buf as *mut c_void); Ok(str) } } } /// An owned, signed, arbitrary-precision integer. /// /// `BigNum` provides wrappers around OpenSSL's checked arithmetic functions. /// Additionally, it implements the standard operators (`std::ops`), which /// perform unchecked arithmetic, unwrapping the returned `Result` of the /// checked operations. pub struct BigNum(BigNumRef<'static>); impl BigNum { /// Creates a new `BigNum` with the value 0. pub fn new() -> Result { unsafe { ffi::init(); let v = try!(cvt_p(ffi::BN_new())); Ok(BigNum::from_ptr(v)) } } /// Creates a new `BigNum` with the given value. pub fn from_u32(n: u32) -> Result { BigNum::new().and_then(|v| unsafe { cvt(ffi::BN_set_word(v.as_ptr(), n as ffi::BN_ULONG)).map(|_| v) }) } /// Creates a `BigNum` from a decimal string. pub fn from_dec_str(s: &str) -> Result { unsafe { let c_str = CString::new(s.as_bytes()).unwrap(); let mut bn = ptr::null_mut(); try!(cvt(ffi::BN_dec2bn(&mut bn, c_str.as_ptr() as *const _))); Ok(BigNum::from_ptr(bn)) } } /// Creates a `BigNum` from a hexadecimal string. pub fn from_hex_str(s: &str) -> Result { unsafe { let c_str = CString::new(s.as_bytes()).unwrap(); let mut bn = ptr::null_mut(); try!(cvt(ffi::BN_hex2bn(&mut bn, c_str.as_ptr() as *const _))); Ok(BigNum::from_ptr(bn)) } } pub unsafe fn from_ptr(handle: *mut ffi::BIGNUM) -> BigNum { BigNum(BigNumRef::from_ptr(handle)) } /// Creates a new `BigNum` from an unsigned, big-endian encoded number of arbitrary length. /// /// ``` /// # use openssl::bn::BigNum; /// let bignum = BigNum::from_slice(&[0x12, 0x00, 0x34]).unwrap(); /// /// assert_eq!(bignum, BigNum::from_u32(0x120034).unwrap()); /// ``` pub fn from_slice(n: &[u8]) -> Result { unsafe { assert!(n.len() <= c_int::max_value() as usize); cvt_p(ffi::BN_bin2bn(n.as_ptr(), n.len() as c_int, ptr::null_mut())) .map(|p| BigNum::from_ptr(p)) } } /// Generates a prime number, placing it in `r`. /// /// # Parameters /// /// * `bits`: The length of the prime in bits (lower bound). /// * `safe`: If true, returns a "safe" prime `p` so that `(p-1)/2` is also prime. /// * `add`/`rem`: If `add` is set to `Some(add)`, `p % add == rem` will hold, where `p` is the /// generated prime and `rem` is `1` if not specified (`None`). pub fn generate_prime(r: &mut BigNumRef, bits: i32, safe: bool, add: Option<&BigNumRef>, rem: Option<&BigNumRef>) -> Result<(), ErrorStack> { unsafe { cvt(ffi::BN_generate_prime_ex(r.0, bits as c_int, safe as c_int, add.map(|n| n.0).unwrap_or(ptr::null_mut()), rem.map(|n| n.0).unwrap_or(ptr::null_mut()), ptr::null_mut())) .map(|_| ()) } } } impl Drop for BigNum { fn drop(&mut self) { unsafe { ffi::BN_clear_free(self.as_ptr()); } } } impl Deref for BigNum { type Target = BigNumRef<'static>; fn deref(&self) -> &BigNumRef<'static> { &self.0 } } impl DerefMut for BigNum { fn deref_mut(&mut self) -> &mut BigNumRef<'static> { &mut self.0 } } impl AsRef> for BigNum { fn as_ref(&self) -> &BigNumRef<'static> { self.deref() } } impl<'a> fmt::Debug for BigNumRef<'a> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { match self.to_dec_str() { Ok(s) => f.write_str(&s), Err(e) => Err(e.into()), } } } impl fmt::Debug for BigNum { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { match self.to_dec_str() { Ok(s) => f.write_str(&s), Err(e) => Err(e.into()), } } } impl<'a> fmt::Display for BigNumRef<'a> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { match self.to_dec_str() { Ok(s) => f.write_str(&s), Err(e) => Err(e.into()), } } } impl fmt::Display for BigNum { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { match self.to_dec_str() { Ok(s) => f.write_str(&s), Err(e) => Err(e.into()), } } } impl<'a, 'b> PartialEq> for BigNumRef<'a> { fn eq(&self, oth: &BigNumRef) -> bool { self.cmp(oth) == Ordering::Equal } } impl<'a> PartialEq for BigNumRef<'a> { fn eq(&self, oth: &BigNum) -> bool { self.eq(oth.deref()) } } impl<'a> Eq for BigNumRef<'a> {} impl PartialEq for BigNum { fn eq(&self, oth: &BigNum) -> bool { self.deref().eq(oth) } } impl<'a> PartialEq> for BigNum { fn eq(&self, oth: &BigNumRef) -> bool { self.deref().eq(oth) } } impl Eq for BigNum {} impl<'a, 'b> PartialOrd> for BigNumRef<'a> { fn partial_cmp(&self, oth: &BigNumRef) -> Option { Some(self.cmp(oth)) } } impl<'a> PartialOrd for BigNumRef<'a> { fn partial_cmp(&self, oth: &BigNum) -> Option { Some(self.cmp(oth.deref())) } } impl<'a> Ord for BigNumRef<'a> { fn cmp(&self, oth: &BigNumRef) -> Ordering { unsafe { ffi::BN_cmp(self.as_ptr(), oth.as_ptr()).cmp(&0) } } } impl PartialOrd for BigNum { fn partial_cmp(&self, oth: &BigNum) -> Option { self.deref().partial_cmp(oth.deref()) } } impl<'a> PartialOrd> for BigNum { fn partial_cmp(&self, oth: &BigNumRef) -> Option { self.deref().partial_cmp(oth) } } impl Ord for BigNum { fn cmp(&self, oth: &BigNum) -> Ordering { self.deref().cmp(oth.deref()) } } macro_rules! delegate { ($t:ident, $m:ident) => { impl<'a, 'b> $t<&'b BigNum> for &'a BigNumRef<'a> { type Output = BigNum; fn $m(self, oth: &BigNum) -> BigNum { $t::$m(self, oth.deref()) } } impl<'a, 'b> $t<&'b BigNumRef<'b>> for &'a BigNum { type Output = BigNum; fn $m(self, oth: &BigNumRef) -> BigNum { $t::$m(self.deref(), oth) } } impl<'a, 'b> $t<&'b BigNum> for &'a BigNum { type Output = BigNum; fn $m(self, oth: &BigNum) -> BigNum { $t::$m(self.deref(), oth.deref()) } } } } impl<'a, 'b> Add<&'b BigNumRef<'b>> for &'a BigNumRef<'a> { type Output = BigNum; fn add(self, oth: &BigNumRef) -> BigNum { let mut r = BigNum::new().unwrap(); self.add(&mut r, oth).unwrap(); r } } delegate!(Add, add); impl<'a, 'b> Sub<&'b BigNumRef<'b>> for &'a BigNumRef<'a> { type Output = BigNum; fn sub(self, oth: &BigNumRef) -> BigNum { let mut r = BigNum::new().unwrap(); self.sub(&mut r, oth).unwrap(); r } } delegate!(Sub, sub); impl<'a, 'b> Mul<&'b BigNumRef<'b>> for &'a BigNumRef<'a> { type Output = BigNum; fn mul(self, oth: &BigNumRef) -> BigNum { let mut ctx = BnCtx::new().unwrap(); let mut r = BigNum::new().unwrap(); ctx.mul(&mut r, self, oth).unwrap(); r } } delegate!(Mul, mul); impl<'a, 'b> Div<&'b BigNumRef<'b>> for &'a BigNumRef<'a> { type Output = BigNum; fn div(self, oth: &'b BigNumRef<'b>) -> BigNum { let mut ctx = BnCtx::new().unwrap(); let mut dv = BigNum::new().unwrap(); ctx.div(Some(&mut dv), None, self, oth).unwrap(); dv } } delegate!(Div, div); impl<'a, 'b> Rem<&'b BigNumRef<'b>> for &'a BigNumRef<'a> { type Output = BigNum; fn rem(self, oth: &'b BigNumRef<'b>) -> BigNum { let mut ctx = BnCtx::new().unwrap(); let mut rem = BigNum::new().unwrap(); ctx.div(None, Some(&mut rem), self, oth).unwrap(); rem } } delegate!(Rem, rem); impl<'a> Shl for &'a BigNumRef<'a> { type Output = BigNum; fn shl(self, n: i32) -> BigNum { let mut r = BigNum::new().unwrap(); self.lshift(&mut r, n).unwrap(); r } } impl<'a> Shl for &'a BigNum { type Output = BigNum; fn shl(self, n: i32) -> BigNum { self.deref().shl(n) } } impl<'a> Shr for &'a BigNumRef<'a> { type Output = BigNum; fn shr(self, n: i32) -> BigNum { let mut r = BigNum::new().unwrap(); self.rshift(&mut r, n).unwrap(); r } } impl<'a> Shr for &'a BigNum { type Output = BigNum; fn shr(self, n: i32) -> BigNum { self.deref().shl(n) } } impl<'a> Neg for &'a BigNumRef<'a> { type Output = BigNum; fn neg(self) -> BigNum { self.to_owned().unwrap().neg() } } impl<'a> Neg for &'a BigNum { type Output = BigNum; fn neg(self) -> BigNum { self.deref().neg() } } impl Neg for BigNum { type Output = BigNum; fn neg(mut self) -> BigNum { let negative = self.is_negative(); self.set_negative(!negative); self } } #[cfg(test)] mod tests { use bn::{BnCtx, BigNum}; #[test] fn test_to_from_slice() { let v0 = BigNum::from_u32(10203004).unwrap(); let vec = v0.to_vec(); let v1 = BigNum::from_slice(&vec).unwrap(); assert!(v0 == v1); } #[test] fn test_negation() { let a = BigNum::from_u32(909829283).unwrap(); assert!(!a.is_negative()); assert!((-a).is_negative()); } #[test] fn test_prime_numbers() { let a = BigNum::from_u32(19029017).unwrap(); let mut p = BigNum::new().unwrap(); BigNum::generate_prime(&mut p, 128, true, None, Some(&a)).unwrap(); let mut ctx = BnCtx::new().unwrap(); assert!(ctx.is_prime(&p, 100).unwrap()); assert!(ctx.is_prime_fasttest(&p, 100, true).unwrap()); } }