boring2/openssl/src/crypto/symm.rs

454 lines
14 KiB
Rust

use std::iter::repeat;
use libc::c_int;
use ffi;
#[derive(Copy, Clone)]
pub enum Mode {
Encrypt,
Decrypt,
}
#[allow(non_camel_case_types)]
#[derive(Copy, Clone)]
pub enum Type {
AES_128_ECB,
AES_128_CBC,
/// Requires the `aes_xts` feature
#[cfg(feature = "aes_xts")]
AES_128_XTS,
#[cfg(feature = "aes_ctr")]
AES_128_CTR,
// AES_128_GCM,
AES_128_CFB1,
AES_128_CFB128,
AES_128_CFB8,
AES_256_ECB,
AES_256_CBC,
/// Requires the `aes_xts` feature
#[cfg(feature = "aes_xts")]
AES_256_XTS,
#[cfg(feature = "aes_ctr")]
AES_256_CTR,
// AES_256_GCM,
AES_256_CFB1,
AES_256_CFB128,
AES_256_CFB8,
DES_CBC,
DES_ECB,
RC4_128,
}
impl Type {
pub fn as_ptr(&self) -> *const ffi::EVP_CIPHER {
unsafe {
match *self {
Type::AES_128_ECB => ffi::EVP_aes_128_ecb(),
Type::AES_128_CBC => ffi::EVP_aes_128_cbc(),
#[cfg(feature = "aes_xts")]
Type::AES_128_XTS => ffi::EVP_aes_128_xts(),
#[cfg(feature = "aes_ctr")]
Type::AES_128_CTR => ffi::EVP_aes_128_ctr(),
// AES_128_GCM => (EVP_aes_128_gcm(), 16, 16),
Type::AES_128_CFB1 => ffi::EVP_aes_128_cfb1(),
Type::AES_128_CFB128 => ffi::EVP_aes_128_cfb128(),
Type::AES_128_CFB8 => ffi::EVP_aes_128_cfb8(),
Type::AES_256_ECB => ffi::EVP_aes_256_ecb(),
Type::AES_256_CBC => ffi::EVP_aes_256_cbc(),
#[cfg(feature = "aes_xts")]
Type::AES_256_XTS => ffi::EVP_aes_256_xts(),
#[cfg(feature = "aes_ctr")]
Type::AES_256_CTR => ffi::EVP_aes_256_ctr(),
// AES_256_GCM => (EVP_aes_256_gcm(), 32, 16),
Type::AES_256_CFB1 => ffi::EVP_aes_256_cfb1(),
Type::AES_256_CFB128 => ffi::EVP_aes_256_cfb128(),
Type::AES_256_CFB8 => ffi::EVP_aes_256_cfb8(),
Type::DES_CBC => ffi::EVP_des_cbc(),
Type::DES_ECB => ffi::EVP_des_ecb(),
Type::RC4_128 => ffi::EVP_rc4(),
}
}
}
/// Returns the length of keys used with this cipher.
pub fn key_len(&self) -> usize {
unsafe {
ffi::EVP_CIPHER_key_length(self.as_ptr()) as usize
}
}
/// Returns the length of the IV used with this cipher, or `None` if the
/// cipher does not use an IV.
pub fn iv_len(&self) -> Option<usize> {
unsafe {
let len = ffi::EVP_CIPHER_iv_length(self.as_ptr()) as usize;
if len == 0 {
None
} else {
Some(len)
}
}
}
/// Returns the block size of the cipher.
///
/// # Note
///
/// Stream ciphers such as RC4 have a block size of 1.
pub fn block_size(&self) -> usize {
unsafe {
ffi::EVP_CIPHER_block_size(self.as_ptr()) as usize
}
}
}
/// Represents a symmetric cipher context.
pub struct Crypter {
evp: *const ffi::EVP_CIPHER,
ctx: *mut ffi::EVP_CIPHER_CTX,
keylen: usize,
blocksize: usize,
}
impl Crypter {
pub fn new(t: Type) -> Crypter {
ffi::init();
let ctx = unsafe { ffi::EVP_CIPHER_CTX_new() };
Crypter {
evp: t.as_ptr(),
ctx: ctx,
keylen: t.key_len(),
blocksize: t.block_size(),
}
}
/**
* Enables or disables padding. If padding is disabled, total amount of
* data encrypted must be a multiple of block size.
*/
pub fn pad(&self, padding: bool) {
if self.blocksize > 0 {
unsafe {
let v = if padding {
1 as c_int
} else {
0
};
ffi::EVP_CIPHER_CTX_set_padding(self.ctx, v);
}
}
}
/**
* Initializes this crypter.
*/
pub fn init(&self, mode: Mode, key: &[u8], iv: &[u8]) {
unsafe {
let mode = match mode {
Mode::Encrypt => 1 as c_int,
Mode::Decrypt => 0 as c_int,
};
assert_eq!(key.len(), self.keylen as usize);
ffi::EVP_CipherInit(self.ctx, self.evp, key.as_ptr(), iv.as_ptr(), mode);
}
}
/**
* Update this crypter with more data to encrypt or decrypt. Returns
* encrypted or decrypted bytes.
*/
pub fn update(&self, data: &[u8]) -> Vec<u8> {
unsafe {
let sum = data.len() + (self.blocksize as usize);
let mut res = repeat(0u8).take(sum).collect::<Vec<_>>();
let mut reslen = sum as c_int;
ffi::EVP_CipherUpdate(self.ctx,
res.as_mut_ptr(),
&mut reslen,
data.as_ptr(),
data.len() as c_int);
res.truncate(reslen as usize);
res
}
}
/**
* Finish crypting. Returns the remaining partial block of output, if any.
*/
pub fn finalize(&self) -> Vec<u8> {
unsafe {
let mut res = repeat(0u8).take(self.blocksize as usize).collect::<Vec<_>>();
let mut reslen = self.blocksize as c_int;
ffi::EVP_CipherFinal(self.ctx, res.as_mut_ptr(), &mut reslen);
res.truncate(reslen as usize);
res
}
}
}
impl Drop for Crypter {
fn drop(&mut self) {
unsafe {
ffi::EVP_CIPHER_CTX_free(self.ctx);
}
}
}
/**
* Encrypts data, using the specified crypter type in encrypt mode with the
* specified key and iv; returns the resulting (encrypted) data.
*/
pub fn encrypt(t: Type, key: &[u8], iv: &[u8], data: &[u8]) -> Vec<u8> {
let c = Crypter::new(t);
c.init(Mode::Encrypt, key, iv);
let mut r = c.update(data);
let rest = c.finalize();
r.extend(rest.into_iter());
r
}
/**
* Decrypts data, using the specified crypter type in decrypt mode with the
* specified key and iv; returns the resulting (decrypted) data.
*/
pub fn decrypt(t: Type, key: &[u8], iv: &[u8], data: &[u8]) -> Vec<u8> {
let c = Crypter::new(t);
c.init(Mode::Decrypt, key, iv);
let mut r = c.update(data);
let rest = c.finalize();
r.extend(rest.into_iter());
r
}
#[cfg(test)]
mod tests {
use serialize::hex::FromHex;
// Test vectors from FIPS-197:
// http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
#[test]
fn test_aes_256_ecb() {
let k0 = [0x00u8, 0x01u8, 0x02u8, 0x03u8, 0x04u8, 0x05u8, 0x06u8, 0x07u8, 0x08u8, 0x09u8,
0x0au8, 0x0bu8, 0x0cu8, 0x0du8, 0x0eu8, 0x0fu8, 0x10u8, 0x11u8, 0x12u8, 0x13u8,
0x14u8, 0x15u8, 0x16u8, 0x17u8, 0x18u8, 0x19u8, 0x1au8, 0x1bu8, 0x1cu8, 0x1du8,
0x1eu8, 0x1fu8];
let p0 = [0x00u8, 0x11u8, 0x22u8, 0x33u8, 0x44u8, 0x55u8, 0x66u8, 0x77u8, 0x88u8, 0x99u8,
0xaau8, 0xbbu8, 0xccu8, 0xddu8, 0xeeu8, 0xffu8];
let c0 = [0x8eu8, 0xa2u8, 0xb7u8, 0xcau8, 0x51u8, 0x67u8, 0x45u8, 0xbfu8, 0xeau8, 0xfcu8,
0x49u8, 0x90u8, 0x4bu8, 0x49u8, 0x60u8, 0x89u8];
let c = super::Crypter::new(super::Type::AES_256_ECB);
c.init(super::Mode::Encrypt, &k0, &[]);
c.pad(false);
let mut r0 = c.update(&p0);
r0.extend(c.finalize().into_iter());
assert!(r0 == c0);
c.init(super::Mode::Decrypt, &k0, &[]);
c.pad(false);
let mut p1 = c.update(&r0);
p1.extend(c.finalize().into_iter());
assert!(p1 == p0);
}
#[test]
fn test_aes_256_cbc_decrypt() {
let cr = super::Crypter::new(super::Type::AES_256_CBC);
let iv = [4_u8, 223_u8, 153_u8, 219_u8, 28_u8, 142_u8, 234_u8, 68_u8, 227_u8, 69_u8,
98_u8, 107_u8, 208_u8, 14_u8, 236_u8, 60_u8, 0_u8, 0_u8, 0_u8, 0_u8, 0_u8, 0_u8,
0_u8, 0_u8, 0_u8, 0_u8, 0_u8, 0_u8, 0_u8, 0_u8, 0_u8, 0_u8];
let data = [143_u8, 210_u8, 75_u8, 63_u8, 214_u8, 179_u8, 155_u8, 241_u8, 242_u8, 31_u8,
154_u8, 56_u8, 198_u8, 145_u8, 192_u8, 64_u8, 2_u8, 245_u8, 167_u8, 220_u8,
55_u8, 119_u8, 233_u8, 136_u8, 139_u8, 27_u8, 71_u8, 242_u8, 119_u8, 175_u8,
65_u8, 207_u8];
let ciphered_data = [0x4a_u8, 0x2e_u8, 0xe5_u8, 0x6_u8, 0xbf_u8, 0xcf_u8, 0xf2_u8,
0xd7_u8, 0xea_u8, 0x2d_u8, 0xb1_u8, 0x85_u8, 0x6c_u8, 0x93_u8,
0x65_u8, 0x6f_u8];
cr.init(super::Mode::Decrypt, &data, &iv);
cr.pad(false);
let unciphered_data_1 = cr.update(&ciphered_data);
let unciphered_data_2 = cr.finalize();
let expected_unciphered_data = b"I love turtles.\x01";
assert!(unciphered_data_2.len() == 0);
assert_eq!(&unciphered_data_1, expected_unciphered_data);
}
fn cipher_test(ciphertype: super::Type, pt: &str, ct: &str, key: &str, iv: &str) {
use serialize::hex::ToHex;
let cipher = super::Crypter::new(ciphertype);
cipher.init(super::Mode::Encrypt,
&key.from_hex().unwrap(),
&iv.from_hex().unwrap());
let expected = ct.from_hex().unwrap();
let mut computed = cipher.update(&pt.from_hex().unwrap());
computed.extend(cipher.finalize().into_iter());
if computed != expected {
println!("Computed: {}", computed.to_hex());
println!("Expected: {}", expected.to_hex());
if computed.len() != expected.len() {
println!("Lengths differ: {} in computed vs {} expected",
computed.len(),
expected.len());
}
panic!("test failure");
}
}
#[test]
fn test_rc4() {
let pt = "0000000000000000000000000000000000000000000000000000000000000000000000000000";
let ct = "A68686B04D686AA107BD8D4CAB191A3EEC0A6294BC78B60F65C25CB47BD7BB3A48EFC4D26BE4";
let key = "97CD440324DA5FD1F7955C1C13B6B466";
let iv = "";
cipher_test(super::Type::RC4_128, pt, ct, key, iv);
}
#[test]
#[cfg(feature = "aes_xts")]
fn test_aes256_xts() {
// Test case 174 from
// http://csrc.nist.gov/groups/STM/cavp/documents/aes/XTSTestVectors.zip
let pt = "77f4ef63d734ebd028508da66c22cdebdd52ecd6ee2ab0a50bc8ad0cfd692ca5fcd4e6dedc45df7f\
6503f462611dc542";
let ct = "ce7d905a7776ac72f240d22aafed5e4eb7566cdc7211220e970da634ce015f131a5ecb8d400bc9e8\
4f0b81d8725dbbc7";
let key = "b6bfef891f83b5ff073f2231267be51eb084b791fa19a154399c0684c8b2dfcb37de77d28bbda3b\
4180026ad640b74243b3133e7b9fae629403f6733423dae28";
let iv = "db200efb7eaaa737dbdf40babb68953f";
cipher_test(super::Type::AES_256_XTS, pt, ct, key, iv);
}
#[test]
#[cfg(feature = "aes_ctr")]
fn test_aes128_ctr() {
let pt = "6BC1BEE22E409F96E93D7E117393172AAE2D8A571E03AC9C9EB76FAC45AF8E5130C81C46A35CE411\
E5FBC1191A0A52EFF69F2445DF4F9B17AD2B417BE66C3710";
let ct = "874D6191B620E3261BEF6864990DB6CE9806F66B7970FDFF8617187BB9FFFDFF5AE4DF3EDBD5D35E\
5B4F09020DB03EAB1E031DDA2FBE03D1792170A0F3009CEE";
let key = "2B7E151628AED2A6ABF7158809CF4F3C";
let iv = "F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF";
cipher_test(super::Type::AES_128_CTR, pt, ct, key, iv);
}
// #[test]
// fn test_aes128_gcm() {
// Test case 3 in GCM spec
// let pt = ~"d9313225f88406e5a55909c5aff5269a86a7a9531534f7da2e4c303d8a318a721c3c0c95956809532fcf0e2449a6b525b16aedf5aa0de657ba637b391aafd255";
// let ct = ~"42831ec2217774244b7221b784d0d49ce3aa212f2c02a4e035c17e2329aca12e21d514b25466931c7d8f6a5aac84aa051ba30b396a0aac973d58e091473f59854d5c2af327cd64a62cf35abd2ba6fab4";
// let key = ~"feffe9928665731c6d6a8f9467308308";
// let iv = ~"cafebabefacedbaddecaf888";
//
// cipher_test(super::AES_128_GCM, pt, ct, key, iv);
// }
#[test]
fn test_aes128_cfb1() {
// Lifted from http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
let pt = "6bc1";
let ct = "68b3";
let key = "2b7e151628aed2a6abf7158809cf4f3c";
let iv = "000102030405060708090a0b0c0d0e0f";
cipher_test(super::Type::AES_128_CFB1, pt, ct, key, iv);
}
#[test]
fn test_aes128_cfb128() {
let pt = "6bc1bee22e409f96e93d7e117393172a";
let ct = "3b3fd92eb72dad20333449f8e83cfb4a";
let key = "2b7e151628aed2a6abf7158809cf4f3c";
let iv = "000102030405060708090a0b0c0d0e0f";
cipher_test(super::Type::AES_128_CFB128, pt, ct, key, iv);
}
#[test]
fn test_aes128_cfb8() {
let pt = "6bc1bee22e409f96e93d7e117393172aae2d";
let ct = "3b79424c9c0dd436bace9e0ed4586a4f32b9";
let key = "2b7e151628aed2a6abf7158809cf4f3c";
let iv = "000102030405060708090a0b0c0d0e0f";
cipher_test(super::Type::AES_128_CFB8, pt, ct, key, iv);
}
#[test]
fn test_aes256_cfb1() {
let pt = "6bc1";
let ct = "9029";
let key = "603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4";
let iv = "000102030405060708090a0b0c0d0e0f";
cipher_test(super::Type::AES_256_CFB1, pt, ct, key, iv);
}
#[test]
fn test_aes256_cfb128() {
let pt = "6bc1bee22e409f96e93d7e117393172a";
let ct = "dc7e84bfda79164b7ecd8486985d3860";
let key = "603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4";
let iv = "000102030405060708090a0b0c0d0e0f";
cipher_test(super::Type::AES_256_CFB128, pt, ct, key, iv);
}
#[test]
fn test_aes256_cfb8() {
let pt = "6bc1bee22e409f96e93d7e117393172aae2d";
let ct = "dc1f1a8520a64db55fcc8ac554844e889700";
let key = "603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4";
let iv = "000102030405060708090a0b0c0d0e0f";
cipher_test(super::Type::AES_256_CFB8, pt, ct, key, iv);
}
#[test]
fn test_des_cbc() {
let pt = "54686973206973206120746573742e";
let ct = "6f2867cfefda048a4046ef7e556c7132";
let key = "7cb66337f3d3c0fe";
let iv = "0001020304050607";
cipher_test(super::Type::DES_CBC, pt, ct, key, iv);
}
#[test]
fn test_des_ecb() {
let pt = "54686973206973206120746573742e";
let ct = "0050ab8aecec758843fe157b4dde938c";
let key = "7cb66337f3d3c0fe";
let iv = "0001020304050607";
cipher_test(super::Type::DES_ECB, pt, ct, key, iv);
}
}