use std::iter::repeat; use libc::c_int; use ffi; #[derive(Copy, Clone)] pub enum Mode { Encrypt, Decrypt, } #[allow(non_camel_case_types)] #[derive(Copy, Clone)] pub enum Type { AES_128_ECB, AES_128_CBC, /// Requires the `aes_xts` feature #[cfg(feature = "aes_xts")] AES_128_XTS, #[cfg(feature = "aes_ctr")] AES_128_CTR, // AES_128_GCM, AES_128_CFB1, AES_128_CFB128, AES_128_CFB8, AES_256_ECB, AES_256_CBC, /// Requires the `aes_xts` feature #[cfg(feature = "aes_xts")] AES_256_XTS, #[cfg(feature = "aes_ctr")] AES_256_CTR, // AES_256_GCM, AES_256_CFB1, AES_256_CFB128, AES_256_CFB8, DES_CBC, DES_ECB, RC4_128, } impl Type { pub fn as_ptr(&self) -> *const ffi::EVP_CIPHER { unsafe { match *self { Type::AES_128_ECB => ffi::EVP_aes_128_ecb(), Type::AES_128_CBC => ffi::EVP_aes_128_cbc(), #[cfg(feature = "aes_xts")] Type::AES_128_XTS => ffi::EVP_aes_128_xts(), #[cfg(feature = "aes_ctr")] Type::AES_128_CTR => ffi::EVP_aes_128_ctr(), // AES_128_GCM => (EVP_aes_128_gcm(), 16, 16), Type::AES_128_CFB1 => ffi::EVP_aes_128_cfb1(), Type::AES_128_CFB128 => ffi::EVP_aes_128_cfb128(), Type::AES_128_CFB8 => ffi::EVP_aes_128_cfb8(), Type::AES_256_ECB => ffi::EVP_aes_256_ecb(), Type::AES_256_CBC => ffi::EVP_aes_256_cbc(), #[cfg(feature = "aes_xts")] Type::AES_256_XTS => ffi::EVP_aes_256_xts(), #[cfg(feature = "aes_ctr")] Type::AES_256_CTR => ffi::EVP_aes_256_ctr(), // AES_256_GCM => (EVP_aes_256_gcm(), 32, 16), Type::AES_256_CFB1 => ffi::EVP_aes_256_cfb1(), Type::AES_256_CFB128 => ffi::EVP_aes_256_cfb128(), Type::AES_256_CFB8 => ffi::EVP_aes_256_cfb8(), Type::DES_CBC => ffi::EVP_des_cbc(), Type::DES_ECB => ffi::EVP_des_ecb(), Type::RC4_128 => ffi::EVP_rc4(), } } } /// Returns the length of keys used with this cipher. pub fn key_len(&self) -> usize { unsafe { ffi::EVP_CIPHER_key_length(self.as_ptr()) as usize } } /// Returns the length of the IV used with this cipher, or `None` if the /// cipher does not use an IV. pub fn iv_len(&self) -> Option { unsafe { let len = ffi::EVP_CIPHER_iv_length(self.as_ptr()) as usize; if len == 0 { None } else { Some(len) } } } /// Returns the block size of the cipher. /// /// # Note /// /// Stream ciphers such as RC4 have a block size of 1. pub fn block_size(&self) -> usize { unsafe { ffi::EVP_CIPHER_block_size(self.as_ptr()) as usize } } } /// Represents a symmetric cipher context. pub struct Crypter { evp: *const ffi::EVP_CIPHER, ctx: *mut ffi::EVP_CIPHER_CTX, keylen: usize, blocksize: usize, } impl Crypter { pub fn new(t: Type) -> Crypter { ffi::init(); let ctx = unsafe { ffi::EVP_CIPHER_CTX_new() }; Crypter { evp: t.as_ptr(), ctx: ctx, keylen: t.key_len(), blocksize: t.block_size(), } } /** * Enables or disables padding. If padding is disabled, total amount of * data encrypted must be a multiple of block size. */ pub fn pad(&self, padding: bool) { if self.blocksize > 0 { unsafe { let v = if padding { 1 as c_int } else { 0 }; ffi::EVP_CIPHER_CTX_set_padding(self.ctx, v); } } } /** * Initializes this crypter. */ pub fn init(&self, mode: Mode, key: &[u8], iv: &[u8]) { unsafe { let mode = match mode { Mode::Encrypt => 1 as c_int, Mode::Decrypt => 0 as c_int, }; assert_eq!(key.len(), self.keylen as usize); ffi::EVP_CipherInit(self.ctx, self.evp, key.as_ptr(), iv.as_ptr(), mode); } } /** * Update this crypter with more data to encrypt or decrypt. Returns * encrypted or decrypted bytes. */ pub fn update(&self, data: &[u8]) -> Vec { unsafe { let sum = data.len() + (self.blocksize as usize); let mut res = repeat(0u8).take(sum).collect::>(); let mut reslen = sum as c_int; ffi::EVP_CipherUpdate(self.ctx, res.as_mut_ptr(), &mut reslen, data.as_ptr(), data.len() as c_int); res.truncate(reslen as usize); res } } /** * Finish crypting. Returns the remaining partial block of output, if any. */ pub fn finalize(&self) -> Vec { unsafe { let mut res = repeat(0u8).take(self.blocksize as usize).collect::>(); let mut reslen = self.blocksize as c_int; ffi::EVP_CipherFinal(self.ctx, res.as_mut_ptr(), &mut reslen); res.truncate(reslen as usize); res } } } impl Drop for Crypter { fn drop(&mut self) { unsafe { ffi::EVP_CIPHER_CTX_free(self.ctx); } } } /** * Encrypts data, using the specified crypter type in encrypt mode with the * specified key and iv; returns the resulting (encrypted) data. */ pub fn encrypt(t: Type, key: &[u8], iv: &[u8], data: &[u8]) -> Vec { let c = Crypter::new(t); c.init(Mode::Encrypt, key, iv); let mut r = c.update(data); let rest = c.finalize(); r.extend(rest.into_iter()); r } /** * Decrypts data, using the specified crypter type in decrypt mode with the * specified key and iv; returns the resulting (decrypted) data. */ pub fn decrypt(t: Type, key: &[u8], iv: &[u8], data: &[u8]) -> Vec { let c = Crypter::new(t); c.init(Mode::Decrypt, key, iv); let mut r = c.update(data); let rest = c.finalize(); r.extend(rest.into_iter()); r } #[cfg(test)] mod tests { use serialize::hex::FromHex; // Test vectors from FIPS-197: // http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf #[test] fn test_aes_256_ecb() { let k0 = [0x00u8, 0x01u8, 0x02u8, 0x03u8, 0x04u8, 0x05u8, 0x06u8, 0x07u8, 0x08u8, 0x09u8, 0x0au8, 0x0bu8, 0x0cu8, 0x0du8, 0x0eu8, 0x0fu8, 0x10u8, 0x11u8, 0x12u8, 0x13u8, 0x14u8, 0x15u8, 0x16u8, 0x17u8, 0x18u8, 0x19u8, 0x1au8, 0x1bu8, 0x1cu8, 0x1du8, 0x1eu8, 0x1fu8]; let p0 = [0x00u8, 0x11u8, 0x22u8, 0x33u8, 0x44u8, 0x55u8, 0x66u8, 0x77u8, 0x88u8, 0x99u8, 0xaau8, 0xbbu8, 0xccu8, 0xddu8, 0xeeu8, 0xffu8]; let c0 = [0x8eu8, 0xa2u8, 0xb7u8, 0xcau8, 0x51u8, 0x67u8, 0x45u8, 0xbfu8, 0xeau8, 0xfcu8, 0x49u8, 0x90u8, 0x4bu8, 0x49u8, 0x60u8, 0x89u8]; let c = super::Crypter::new(super::Type::AES_256_ECB); c.init(super::Mode::Encrypt, &k0, &[]); c.pad(false); let mut r0 = c.update(&p0); r0.extend(c.finalize().into_iter()); assert!(r0 == c0); c.init(super::Mode::Decrypt, &k0, &[]); c.pad(false); let mut p1 = c.update(&r0); p1.extend(c.finalize().into_iter()); assert!(p1 == p0); } #[test] fn test_aes_256_cbc_decrypt() { let cr = super::Crypter::new(super::Type::AES_256_CBC); let iv = [4_u8, 223_u8, 153_u8, 219_u8, 28_u8, 142_u8, 234_u8, 68_u8, 227_u8, 69_u8, 98_u8, 107_u8, 208_u8, 14_u8, 236_u8, 60_u8, 0_u8, 0_u8, 0_u8, 0_u8, 0_u8, 0_u8, 0_u8, 0_u8, 0_u8, 0_u8, 0_u8, 0_u8, 0_u8, 0_u8, 0_u8, 0_u8]; let data = [143_u8, 210_u8, 75_u8, 63_u8, 214_u8, 179_u8, 155_u8, 241_u8, 242_u8, 31_u8, 154_u8, 56_u8, 198_u8, 145_u8, 192_u8, 64_u8, 2_u8, 245_u8, 167_u8, 220_u8, 55_u8, 119_u8, 233_u8, 136_u8, 139_u8, 27_u8, 71_u8, 242_u8, 119_u8, 175_u8, 65_u8, 207_u8]; let ciphered_data = [0x4a_u8, 0x2e_u8, 0xe5_u8, 0x6_u8, 0xbf_u8, 0xcf_u8, 0xf2_u8, 0xd7_u8, 0xea_u8, 0x2d_u8, 0xb1_u8, 0x85_u8, 0x6c_u8, 0x93_u8, 0x65_u8, 0x6f_u8]; cr.init(super::Mode::Decrypt, &data, &iv); cr.pad(false); let unciphered_data_1 = cr.update(&ciphered_data); let unciphered_data_2 = cr.finalize(); let expected_unciphered_data = b"I love turtles.\x01"; assert!(unciphered_data_2.len() == 0); assert_eq!(&unciphered_data_1, expected_unciphered_data); } fn cipher_test(ciphertype: super::Type, pt: &str, ct: &str, key: &str, iv: &str) { use serialize::hex::ToHex; let cipher = super::Crypter::new(ciphertype); cipher.init(super::Mode::Encrypt, &key.from_hex().unwrap(), &iv.from_hex().unwrap()); let expected = ct.from_hex().unwrap(); let mut computed = cipher.update(&pt.from_hex().unwrap()); computed.extend(cipher.finalize().into_iter()); if computed != expected { println!("Computed: {}", computed.to_hex()); println!("Expected: {}", expected.to_hex()); if computed.len() != expected.len() { println!("Lengths differ: {} in computed vs {} expected", computed.len(), expected.len()); } panic!("test failure"); } } #[test] fn test_rc4() { let pt = "0000000000000000000000000000000000000000000000000000000000000000000000000000"; let ct = "A68686B04D686AA107BD8D4CAB191A3EEC0A6294BC78B60F65C25CB47BD7BB3A48EFC4D26BE4"; let key = "97CD440324DA5FD1F7955C1C13B6B466"; let iv = ""; cipher_test(super::Type::RC4_128, pt, ct, key, iv); } #[test] #[cfg(feature = "aes_xts")] fn test_aes256_xts() { // Test case 174 from // http://csrc.nist.gov/groups/STM/cavp/documents/aes/XTSTestVectors.zip let pt = "77f4ef63d734ebd028508da66c22cdebdd52ecd6ee2ab0a50bc8ad0cfd692ca5fcd4e6dedc45df7f\ 6503f462611dc542"; let ct = "ce7d905a7776ac72f240d22aafed5e4eb7566cdc7211220e970da634ce015f131a5ecb8d400bc9e8\ 4f0b81d8725dbbc7"; let key = "b6bfef891f83b5ff073f2231267be51eb084b791fa19a154399c0684c8b2dfcb37de77d28bbda3b\ 4180026ad640b74243b3133e7b9fae629403f6733423dae28"; let iv = "db200efb7eaaa737dbdf40babb68953f"; cipher_test(super::Type::AES_256_XTS, pt, ct, key, iv); } #[test] #[cfg(feature = "aes_ctr")] fn test_aes128_ctr() { let pt = "6BC1BEE22E409F96E93D7E117393172AAE2D8A571E03AC9C9EB76FAC45AF8E5130C81C46A35CE411\ E5FBC1191A0A52EFF69F2445DF4F9B17AD2B417BE66C3710"; let ct = "874D6191B620E3261BEF6864990DB6CE9806F66B7970FDFF8617187BB9FFFDFF5AE4DF3EDBD5D35E\ 5B4F09020DB03EAB1E031DDA2FBE03D1792170A0F3009CEE"; let key = "2B7E151628AED2A6ABF7158809CF4F3C"; let iv = "F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF"; cipher_test(super::Type::AES_128_CTR, pt, ct, key, iv); } // #[test] // fn test_aes128_gcm() { // Test case 3 in GCM spec // let pt = ~"d9313225f88406e5a55909c5aff5269a86a7a9531534f7da2e4c303d8a318a721c3c0c95956809532fcf0e2449a6b525b16aedf5aa0de657ba637b391aafd255"; // let ct = ~"42831ec2217774244b7221b784d0d49ce3aa212f2c02a4e035c17e2329aca12e21d514b25466931c7d8f6a5aac84aa051ba30b396a0aac973d58e091473f59854d5c2af327cd64a62cf35abd2ba6fab4"; // let key = ~"feffe9928665731c6d6a8f9467308308"; // let iv = ~"cafebabefacedbaddecaf888"; // // cipher_test(super::AES_128_GCM, pt, ct, key, iv); // } #[test] fn test_aes128_cfb1() { // Lifted from http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf let pt = "6bc1"; let ct = "68b3"; let key = "2b7e151628aed2a6abf7158809cf4f3c"; let iv = "000102030405060708090a0b0c0d0e0f"; cipher_test(super::Type::AES_128_CFB1, pt, ct, key, iv); } #[test] fn test_aes128_cfb128() { let pt = "6bc1bee22e409f96e93d7e117393172a"; let ct = "3b3fd92eb72dad20333449f8e83cfb4a"; let key = "2b7e151628aed2a6abf7158809cf4f3c"; let iv = "000102030405060708090a0b0c0d0e0f"; cipher_test(super::Type::AES_128_CFB128, pt, ct, key, iv); } #[test] fn test_aes128_cfb8() { let pt = "6bc1bee22e409f96e93d7e117393172aae2d"; let ct = "3b79424c9c0dd436bace9e0ed4586a4f32b9"; let key = "2b7e151628aed2a6abf7158809cf4f3c"; let iv = "000102030405060708090a0b0c0d0e0f"; cipher_test(super::Type::AES_128_CFB8, pt, ct, key, iv); } #[test] fn test_aes256_cfb1() { let pt = "6bc1"; let ct = "9029"; let key = "603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4"; let iv = "000102030405060708090a0b0c0d0e0f"; cipher_test(super::Type::AES_256_CFB1, pt, ct, key, iv); } #[test] fn test_aes256_cfb128() { let pt = "6bc1bee22e409f96e93d7e117393172a"; let ct = "dc7e84bfda79164b7ecd8486985d3860"; let key = "603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4"; let iv = "000102030405060708090a0b0c0d0e0f"; cipher_test(super::Type::AES_256_CFB128, pt, ct, key, iv); } #[test] fn test_aes256_cfb8() { let pt = "6bc1bee22e409f96e93d7e117393172aae2d"; let ct = "dc1f1a8520a64db55fcc8ac554844e889700"; let key = "603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4"; let iv = "000102030405060708090a0b0c0d0e0f"; cipher_test(super::Type::AES_256_CFB8, pt, ct, key, iv); } #[test] fn test_des_cbc() { let pt = "54686973206973206120746573742e"; let ct = "6f2867cfefda048a4046ef7e556c7132"; let key = "7cb66337f3d3c0fe"; let iv = "0001020304050607"; cipher_test(super::Type::DES_CBC, pt, ct, key, iv); } #[test] fn test_des_ecb() { let pt = "54686973206973206120746573742e"; let ct = "0050ab8aecec758843fe157b4dde938c"; let key = "7cb66337f3d3c0fe"; let iv = "0001020304050607"; cipher_test(super::Type::DES_ECB, pt, ct, key, iv); } }