boring2/crypto/symm.rs

277 lines
8.6 KiB
Rust

use libc::{c_int, c_uint};
use libc;
#[allow(non_camel_case_types)]
pub type EVP_CIPHER_CTX = *libc::c_void;
#[allow(non_camel_case_types)]
pub type EVP_CIPHER = *libc::c_void;
#[link(name = "crypto")]
extern {
fn EVP_CIPHER_CTX_new() -> EVP_CIPHER_CTX;
fn EVP_CIPHER_CTX_set_padding(ctx: EVP_CIPHER_CTX, padding: c_int);
fn EVP_CIPHER_CTX_free(ctx: EVP_CIPHER_CTX);
fn EVP_aes_128_ecb() -> EVP_CIPHER;
fn EVP_aes_128_cbc() -> EVP_CIPHER;
// fn EVP_aes_128_ctr() -> EVP_CIPHER;
// fn EVP_aes_128_gcm() -> EVP_CIPHER;
fn EVP_aes_256_ecb() -> EVP_CIPHER;
fn EVP_aes_256_cbc() -> EVP_CIPHER;
// fn EVP_aes_256_ctr() -> EVP_CIPHER;
// fn EVP_aes_256_gcm() -> EVP_CIPHER;
fn EVP_rc4() -> EVP_CIPHER;
fn EVP_CipherInit(ctx: EVP_CIPHER_CTX, evp: EVP_CIPHER,
key: *u8, iv: *u8, mode: c_int);
fn EVP_CipherUpdate(ctx: EVP_CIPHER_CTX, outbuf: *mut u8,
outlen: &mut c_uint, inbuf: *u8, inlen: c_int);
fn EVP_CipherFinal(ctx: EVP_CIPHER_CTX, res: *mut u8, len: &mut c_int);
}
pub enum Mode {
Encrypt,
Decrypt,
}
#[allow(non_camel_case_types)]
pub enum Type {
AES_128_ECB,
AES_128_CBC,
// AES_128_CTR,
//AES_128_GCM,
AES_256_ECB,
AES_256_CBC,
// AES_256_CTR,
//AES_256_GCM,
RC4_128,
}
fn evpc(t: Type) -> (EVP_CIPHER, uint, uint) {
unsafe {
match t {
AES_128_ECB => (EVP_aes_128_ecb(), 16u, 16u),
AES_128_CBC => (EVP_aes_128_cbc(), 16u, 16u),
// AES_128_CTR => (EVP_aes_128_ctr(), 16u, 0u),
//AES_128_GCM => (EVP_aes_128_gcm(), 16u, 16u),
AES_256_ECB => (EVP_aes_256_ecb(), 32u, 16u),
AES_256_CBC => (EVP_aes_256_cbc(), 32u, 16u),
// AES_256_CTR => (EVP_aes_256_ctr(), 32u, 0u),
//AES_256_GCM => (EVP_aes_256_gcm(), 32u, 16u),
RC4_128 => (EVP_rc4(), 16u, 0u),
}
}
}
/// Represents a symmetric cipher context.
pub struct Crypter {
evp: EVP_CIPHER,
ctx: EVP_CIPHER_CTX,
keylen: uint,
blocksize: uint
}
impl Crypter {
pub fn new(t: Type) -> Crypter {
let ctx = unsafe { EVP_CIPHER_CTX_new() };
let (evp, keylen, blocksz) = evpc(t);
Crypter { evp: evp, ctx: ctx, keylen: keylen, blocksize: blocksz }
}
/**
* Enables or disables padding. If padding is disabled, total amount of
* data encrypted must be a multiple of block size.
*/
pub fn pad(&self, padding: bool) {
if self.blocksize > 0 {
unsafe {
let v = if padding { 1 } else { 0 } as c_int;
EVP_CIPHER_CTX_set_padding(self.ctx, v);
}
}
}
/**
* Initializes this crypter.
*/
pub fn init(&self, mode: Mode, key: &[u8], iv: Vec<u8>) {
unsafe {
let mode = match mode {
Encrypt => 1 as c_int,
Decrypt => 0 as c_int,
};
assert_eq!(key.len(), self.keylen);
EVP_CipherInit(
self.ctx,
self.evp,
key.as_ptr(),
iv.as_ptr(),
mode
)
}
}
/**
* Update this crypter with more data to encrypt or decrypt. Returns
* encrypted or decrypted bytes.
*/
pub fn update(&self, data: &[u8]) -> Vec<u8> {
unsafe {
let mut res = Vec::from_elem(data.len() + self.blocksize, 0u8);
let mut reslen = (data.len() + self.blocksize) as u32;
EVP_CipherUpdate(
self.ctx,
res.as_mut_ptr(),
&mut reslen,
data.as_ptr(),
data.len() as c_int
);
res.truncate(reslen as uint);
res
}
}
/**
* Finish crypting. Returns the remaining partial block of output, if any.
*/
pub fn final(&self) -> Vec<u8> {
unsafe {
let mut res = Vec::from_elem(self.blocksize, 0u8);
let mut reslen = self.blocksize as c_int;
EVP_CipherFinal(self.ctx,
res.as_mut_ptr(),
&mut reslen);
res.truncate(reslen as uint);
res
}
}
}
impl Drop for Crypter {
fn drop(&mut self) {
unsafe {
EVP_CIPHER_CTX_free(self.ctx);
}
}
}
/**
* Encrypts data, using the specified crypter type in encrypt mode with the
* specified key and iv; returns the resulting (encrypted) data.
*/
pub fn encrypt(t: Type, key: &[u8], iv: Vec<u8>, data: &[u8]) -> Vec<u8> {
let c = Crypter::new(t);
c.init(Encrypt, key, iv);
let r = c.update(data);
let rest = c.final();
r.append(rest.as_slice())
}
/**
* Decrypts data, using the specified crypter type in decrypt mode with the
* specified key and iv; returns the resulting (decrypted) data.
*/
pub fn decrypt(t: Type, key: &[u8], iv: Vec<u8>, data: &[u8]) -> Vec<u8> {
let c = Crypter::new(t);
c.init(Decrypt, key, iv);
let r = c.update(data);
let rest = c.final();
r.append(rest.as_slice())
}
#[cfg(test)]
mod tests {
use serialize::hex::FromHex;
// Test vectors from FIPS-197:
// http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
#[test]
fn test_aes_256_ecb() {
let k0 =
vec!(0x00u8, 0x01u8, 0x02u8, 0x03u8, 0x04u8, 0x05u8, 0x06u8, 0x07u8,
0x08u8, 0x09u8, 0x0au8, 0x0bu8, 0x0cu8, 0x0du8, 0x0eu8, 0x0fu8,
0x10u8, 0x11u8, 0x12u8, 0x13u8, 0x14u8, 0x15u8, 0x16u8, 0x17u8,
0x18u8, 0x19u8, 0x1au8, 0x1bu8, 0x1cu8, 0x1du8, 0x1eu8, 0x1fu8);
let p0 =
vec!(0x00u8, 0x11u8, 0x22u8, 0x33u8, 0x44u8, 0x55u8, 0x66u8, 0x77u8,
0x88u8, 0x99u8, 0xaau8, 0xbbu8, 0xccu8, 0xddu8, 0xeeu8, 0xffu8);
let c0 =
vec!(0x8eu8, 0xa2u8, 0xb7u8, 0xcau8, 0x51u8, 0x67u8, 0x45u8, 0xbfu8,
0xeau8, 0xfcu8, 0x49u8, 0x90u8, 0x4bu8, 0x49u8, 0x60u8, 0x89u8);
let c = super::Crypter::new(super::AES_256_ECB);
c.init(super::Encrypt, k0.as_slice(), []);
c.pad(false);
let r0 = c.update(p0.as_slice()).append(c.final().as_slice());
assert!(r0 == c0);
c.init(super::Decrypt, k0.as_slice(), []);
c.pad(false);
let p1 = c.update(r0.as_slice()).append(c.final().as_slice());
assert!(p1 == p0);
}
fn cipher_test(ciphertype: super::Type, pt: &str, ct: &str, key: &str, iv: &str) {
use serialize::hex::ToHex;
let cipher = super::Crypter::new(ciphertype);
cipher.init(super::Encrypt, key.from_hex().unwrap().as_slice(), iv.from_hex().unwrap().as_slice());
let expected = Vec::from_slice(ct.from_hex().unwrap().as_slice());
let computed = cipher.update(pt.from_hex().unwrap().as_slice()).append(cipher.final().as_slice());
if computed != expected {
println!("Computed: {}", computed.as_slice().to_hex());
println!("Expected: {}", expected.as_slice().to_hex());
if computed.len() != expected.len() {
println!("Lengths differ: {} in computed vs {} expected",
computed.len(), expected.len());
}
fail!("test failure");
}
}
#[test]
fn test_rc4() {
let pt = "0000000000000000000000000000000000000000000000000000000000000000000000000000";
let ct = "A68686B04D686AA107BD8D4CAB191A3EEC0A6294BC78B60F65C25CB47BD7BB3A48EFC4D26BE4";
let key = "97CD440324DA5FD1F7955C1C13B6B466";
let iv = "";
cipher_test(super::RC4_128, pt, ct, key, iv);
}
/*#[test]
fn test_aes128_ctr() {
let pt = ~"6BC1BEE22E409F96E93D7E117393172AAE2D8A571E03AC9C9EB76FAC45AF8E5130C81C46A35CE411E5FBC1191A0A52EFF69F2445DF4F9B17AD2B417BE66C3710";
let ct = ~"874D6191B620E3261BEF6864990DB6CE9806F66B7970FDFF8617187BB9FFFDFF5AE4DF3EDBD5D35E5B4F09020DB03EAB1E031DDA2FBE03D1792170A0F3009CEE";
let key = ~"2B7E151628AED2A6ABF7158809CF4F3C";
let iv = ~"F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF";
cipher_test(super::AES_128_CTR, pt, ct, key, iv);
}*/
/*#[test]
fn test_aes128_gcm() {
// Test case 3 in GCM spec
let pt = ~"d9313225f88406e5a55909c5aff5269a86a7a9531534f7da2e4c303d8a318a721c3c0c95956809532fcf0e2449a6b525b16aedf5aa0de657ba637b391aafd255";
let ct = ~"42831ec2217774244b7221b784d0d49ce3aa212f2c02a4e035c17e2329aca12e21d514b25466931c7d8f6a5aac84aa051ba30b396a0aac973d58e091473f59854d5c2af327cd64a62cf35abd2ba6fab4";
let key = ~"feffe9928665731c6d6a8f9467308308";
let iv = ~"cafebabefacedbaddecaf888";
cipher_test(super::AES_128_GCM, pt, ct, key, iv);
}*/
}