use libc::{c_int, c_uint}; use libc; #[allow(non_camel_case_types)] pub type EVP_CIPHER_CTX = *libc::c_void; #[allow(non_camel_case_types)] pub type EVP_CIPHER = *libc::c_void; #[link(name = "crypto")] extern { fn EVP_CIPHER_CTX_new() -> EVP_CIPHER_CTX; fn EVP_CIPHER_CTX_set_padding(ctx: EVP_CIPHER_CTX, padding: c_int); fn EVP_CIPHER_CTX_free(ctx: EVP_CIPHER_CTX); fn EVP_aes_128_ecb() -> EVP_CIPHER; fn EVP_aes_128_cbc() -> EVP_CIPHER; // fn EVP_aes_128_ctr() -> EVP_CIPHER; // fn EVP_aes_128_gcm() -> EVP_CIPHER; fn EVP_aes_256_ecb() -> EVP_CIPHER; fn EVP_aes_256_cbc() -> EVP_CIPHER; // fn EVP_aes_256_ctr() -> EVP_CIPHER; // fn EVP_aes_256_gcm() -> EVP_CIPHER; fn EVP_rc4() -> EVP_CIPHER; fn EVP_CipherInit(ctx: EVP_CIPHER_CTX, evp: EVP_CIPHER, key: *u8, iv: *u8, mode: c_int); fn EVP_CipherUpdate(ctx: EVP_CIPHER_CTX, outbuf: *mut u8, outlen: &mut c_uint, inbuf: *u8, inlen: c_int); fn EVP_CipherFinal(ctx: EVP_CIPHER_CTX, res: *mut u8, len: &mut c_int); } pub enum Mode { Encrypt, Decrypt, } #[allow(non_camel_case_types)] pub enum Type { AES_128_ECB, AES_128_CBC, // AES_128_CTR, //AES_128_GCM, AES_256_ECB, AES_256_CBC, // AES_256_CTR, //AES_256_GCM, RC4_128, } fn evpc(t: Type) -> (EVP_CIPHER, uint, uint) { unsafe { match t { AES_128_ECB => (EVP_aes_128_ecb(), 16u, 16u), AES_128_CBC => (EVP_aes_128_cbc(), 16u, 16u), // AES_128_CTR => (EVP_aes_128_ctr(), 16u, 0u), //AES_128_GCM => (EVP_aes_128_gcm(), 16u, 16u), AES_256_ECB => (EVP_aes_256_ecb(), 32u, 16u), AES_256_CBC => (EVP_aes_256_cbc(), 32u, 16u), // AES_256_CTR => (EVP_aes_256_ctr(), 32u, 0u), //AES_256_GCM => (EVP_aes_256_gcm(), 32u, 16u), RC4_128 => (EVP_rc4(), 16u, 0u), } } } /// Represents a symmetric cipher context. pub struct Crypter { evp: EVP_CIPHER, ctx: EVP_CIPHER_CTX, keylen: uint, blocksize: uint } impl Crypter { pub fn new(t: Type) -> Crypter { let ctx = unsafe { EVP_CIPHER_CTX_new() }; let (evp, keylen, blocksz) = evpc(t); Crypter { evp: evp, ctx: ctx, keylen: keylen, blocksize: blocksz } } /** * Enables or disables padding. If padding is disabled, total amount of * data encrypted must be a multiple of block size. */ pub fn pad(&self, padding: bool) { if self.blocksize > 0 { unsafe { let v = if padding { 1 } else { 0 } as c_int; EVP_CIPHER_CTX_set_padding(self.ctx, v); } } } /** * Initializes this crypter. */ pub fn init(&self, mode: Mode, key: &[u8], iv: Vec) { unsafe { let mode = match mode { Encrypt => 1 as c_int, Decrypt => 0 as c_int, }; assert_eq!(key.len(), self.keylen); EVP_CipherInit( self.ctx, self.evp, key.as_ptr(), iv.as_ptr(), mode ) } } /** * Update this crypter with more data to encrypt or decrypt. Returns * encrypted or decrypted bytes. */ pub fn update(&self, data: &[u8]) -> Vec { unsafe { let mut res = Vec::from_elem(data.len() + self.blocksize, 0u8); let mut reslen = (data.len() + self.blocksize) as u32; EVP_CipherUpdate( self.ctx, res.as_mut_ptr(), &mut reslen, data.as_ptr(), data.len() as c_int ); res.truncate(reslen as uint); res } } /** * Finish crypting. Returns the remaining partial block of output, if any. */ pub fn final(&self) -> Vec { unsafe { let mut res = Vec::from_elem(self.blocksize, 0u8); let mut reslen = self.blocksize as c_int; EVP_CipherFinal(self.ctx, res.as_mut_ptr(), &mut reslen); res.truncate(reslen as uint); res } } } impl Drop for Crypter { fn drop(&mut self) { unsafe { EVP_CIPHER_CTX_free(self.ctx); } } } /** * Encrypts data, using the specified crypter type in encrypt mode with the * specified key and iv; returns the resulting (encrypted) data. */ pub fn encrypt(t: Type, key: &[u8], iv: Vec, data: &[u8]) -> Vec { let c = Crypter::new(t); c.init(Encrypt, key, iv); let r = c.update(data); let rest = c.final(); r.append(rest.as_slice()) } /** * Decrypts data, using the specified crypter type in decrypt mode with the * specified key and iv; returns the resulting (decrypted) data. */ pub fn decrypt(t: Type, key: &[u8], iv: Vec, data: &[u8]) -> Vec { let c = Crypter::new(t); c.init(Decrypt, key, iv); let r = c.update(data); let rest = c.final(); r.append(rest.as_slice()) } #[cfg(test)] mod tests { use serialize::hex::FromHex; // Test vectors from FIPS-197: // http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf #[test] fn test_aes_256_ecb() { let k0 = vec!(0x00u8, 0x01u8, 0x02u8, 0x03u8, 0x04u8, 0x05u8, 0x06u8, 0x07u8, 0x08u8, 0x09u8, 0x0au8, 0x0bu8, 0x0cu8, 0x0du8, 0x0eu8, 0x0fu8, 0x10u8, 0x11u8, 0x12u8, 0x13u8, 0x14u8, 0x15u8, 0x16u8, 0x17u8, 0x18u8, 0x19u8, 0x1au8, 0x1bu8, 0x1cu8, 0x1du8, 0x1eu8, 0x1fu8); let p0 = vec!(0x00u8, 0x11u8, 0x22u8, 0x33u8, 0x44u8, 0x55u8, 0x66u8, 0x77u8, 0x88u8, 0x99u8, 0xaau8, 0xbbu8, 0xccu8, 0xddu8, 0xeeu8, 0xffu8); let c0 = vec!(0x8eu8, 0xa2u8, 0xb7u8, 0xcau8, 0x51u8, 0x67u8, 0x45u8, 0xbfu8, 0xeau8, 0xfcu8, 0x49u8, 0x90u8, 0x4bu8, 0x49u8, 0x60u8, 0x89u8); let c = super::Crypter::new(super::AES_256_ECB); c.init(super::Encrypt, k0.as_slice(), []); c.pad(false); let r0 = c.update(p0.as_slice()).append(c.final().as_slice()); assert!(r0 == c0); c.init(super::Decrypt, k0.as_slice(), []); c.pad(false); let p1 = c.update(r0.as_slice()).append(c.final().as_slice()); assert!(p1 == p0); } fn cipher_test(ciphertype: super::Type, pt: &str, ct: &str, key: &str, iv: &str) { use serialize::hex::ToHex; let cipher = super::Crypter::new(ciphertype); cipher.init(super::Encrypt, key.from_hex().unwrap().as_slice(), iv.from_hex().unwrap().as_slice()); let expected = Vec::from_slice(ct.from_hex().unwrap().as_slice()); let computed = cipher.update(pt.from_hex().unwrap().as_slice()).append(cipher.final().as_slice()); if computed != expected { println!("Computed: {}", computed.as_slice().to_hex()); println!("Expected: {}", expected.as_slice().to_hex()); if computed.len() != expected.len() { println!("Lengths differ: {} in computed vs {} expected", computed.len(), expected.len()); } fail!("test failure"); } } #[test] fn test_rc4() { let pt = "0000000000000000000000000000000000000000000000000000000000000000000000000000"; let ct = "A68686B04D686AA107BD8D4CAB191A3EEC0A6294BC78B60F65C25CB47BD7BB3A48EFC4D26BE4"; let key = "97CD440324DA5FD1F7955C1C13B6B466"; let iv = ""; cipher_test(super::RC4_128, pt, ct, key, iv); } /*#[test] fn test_aes128_ctr() { let pt = ~"6BC1BEE22E409F96E93D7E117393172AAE2D8A571E03AC9C9EB76FAC45AF8E5130C81C46A35CE411E5FBC1191A0A52EFF69F2445DF4F9B17AD2B417BE66C3710"; let ct = ~"874D6191B620E3261BEF6864990DB6CE9806F66B7970FDFF8617187BB9FFFDFF5AE4DF3EDBD5D35E5B4F09020DB03EAB1E031DDA2FBE03D1792170A0F3009CEE"; let key = ~"2B7E151628AED2A6ABF7158809CF4F3C"; let iv = ~"F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF"; cipher_test(super::AES_128_CTR, pt, ct, key, iv); }*/ /*#[test] fn test_aes128_gcm() { // Test case 3 in GCM spec let pt = ~"d9313225f88406e5a55909c5aff5269a86a7a9531534f7da2e4c303d8a318a721c3c0c95956809532fcf0e2449a6b525b16aedf5aa0de657ba637b391aafd255"; let ct = ~"42831ec2217774244b7221b784d0d49ce3aa212f2c02a4e035c17e2329aca12e21d514b25466931c7d8f6a5aac84aa051ba30b396a0aac973d58e091473f59854d5c2af327cd64a62cf35abd2ba6fab4"; let key = ~"feffe9928665731c6d6a8f9467308308"; let iv = ~"cafebabefacedbaddecaf888"; cipher_test(super::AES_128_GCM, pt, ct, key, iv); }*/ }