lanzaboote/rust/stub/src/main.rs

289 lines
8.9 KiB
Rust

#![no_main]
#![no_std]
#![feature(abi_efiapi)]
#![feature(negative_impls)]
#![deny(unsafe_op_in_unsafe_fn)]
extern crate alloc;
mod linux_loader;
mod pe_loader;
mod pe_section;
mod uefi_helpers;
use alloc::vec::Vec;
use pe_loader::Image;
use pe_section::{pe_section, pe_section_as_string};
use sha2::{Digest, Sha256};
use uefi::{
prelude::*,
proto::{
console::text::Output,
loaded_image::LoadedImage,
media::file::{File, FileAttribute, FileMode, RegularFile},
},
CStr16, CString16, Result,
};
use crate::{
linux_loader::InitrdLoader,
uefi_helpers::{booted_image_file, read_all},
};
type Hash = sha2::digest::Output<Sha256>;
/// Print the startup logo on boot.
fn print_logo(output: &mut Output) -> Result<()> {
output.clear()?;
output.output_string(cstr16!(
"
_ _ _\r
| | | | | |\r
| | __ _ _ __ ______ _| |__ ___ ___ | |_ ___\r
| |/ _` | '_ \\|_ / _` | '_ \\ / _ \\ / _ \\| __/ _ \\\r
| | (_| | | | |/ / (_| | |_) | (_) | (_) | || __/\r
|_|\\__,_|_| |_/___\\__,_|_.__/ \\___/ \\___/ \\__\\___|\r
\r
"
))
}
/// The configuration that is embedded at build time.
///
/// After lanzaboote is built, lanzatool needs to embed configuration
/// into the binary. This struct represents that information.
struct EmbeddedConfiguration {
/// The filename of the kernel to be booted. This filename is
/// relative to the root of the volume that contains the
/// lanzaboote binary.
kernel_filename: CString16,
/// The cryptographic hash of the kernel.
kernel_hash: Hash,
/// The filename of the initrd to be passed to the kernel. See
/// `kernel_filename` for how to interpret these filenames.
initrd_filename: CString16,
/// The cryptographic hash of the initrd. This hash is computed
/// over the whole PE binary, not only the embedded initrd.
initrd_hash: Hash,
/// The kernel command-line.
cmdline: CString16,
}
/// Extract a string, stored as UTF-8, from a PE section.
fn extract_string(file_data: &[u8], section: &str) -> Result<CString16> {
let string = pe_section_as_string(file_data, section).ok_or(Status::INVALID_PARAMETER)?;
Ok(CString16::try_from(string.as_str()).map_err(|_| Status::INVALID_PARAMETER)?)
}
/// Extract a Blake3 hash from a PE section.
fn extract_hash(file_data: &[u8], section: &str) -> Result<Hash> {
let array: [u8; 32] = pe_section(file_data, section)
.ok_or(Status::INVALID_PARAMETER)?
.try_into()
.map_err(|_| Status::INVALID_PARAMETER)?;
Ok(array.into())
}
impl EmbeddedConfiguration {
fn new(file: &mut RegularFile) -> Result<Self> {
file.set_position(0)?;
let file_data = read_all(file)?;
Ok(Self {
kernel_filename: extract_string(&file_data, ".kernelp")?,
kernel_hash: extract_hash(&file_data, ".kernelh")?,
initrd_filename: extract_string(&file_data, ".initrdp")?,
initrd_hash: extract_hash(&file_data, ".initrdh")?,
cmdline: extract_string(&file_data, ".cmdline")?,
})
}
}
/// Boot the Linux kernel without checking the PE signature.
///
/// We assume that the caller has made sure that the image is safe to
/// be loaded using other means.
fn boot_linux_unchecked(
handle: Handle,
system_table: SystemTable<Boot>,
kernel_data: Vec<u8>,
kernel_cmdline: &CStr16,
initrd_data: Vec<u8>,
) -> uefi::Result<()> {
let kernel =
Image::load(system_table.boot_services(), &kernel_data).expect("Failed to load the kernel");
let mut initrd_loader = InitrdLoader::new(system_table.boot_services(), handle, initrd_data)?;
let status = unsafe { kernel.start(handle, &system_table, kernel_cmdline) };
initrd_loader.uninstall(system_table.boot_services())?;
status.into()
}
/// Boot the Linux kernel via the UEFI PE loader.
///
/// This should only succeed when UEFI Secure Boot is off (or
/// broken...), because the Lanzaboote tool does not sign the kernel.
///
/// In essence, we can use this routine to detect whether Secure Boot
/// is actually enabled.
fn boot_linux_uefi(
handle: Handle,
system_table: SystemTable<Boot>,
kernel_data: Vec<u8>,
kernel_cmdline: &CStr16,
initrd_data: Vec<u8>,
) -> uefi::Result<()> {
let kernel_handle = system_table.boot_services().load_image(
handle,
uefi::table::boot::LoadImageSource::FromBuffer {
buffer: &kernel_data,
file_path: None,
},
)?;
let mut kernel_image = system_table
.boot_services()
.open_protocol_exclusive::<LoadedImage>(kernel_handle)?;
unsafe {
kernel_image.set_load_options(
kernel_cmdline.as_ptr() as *const u8,
// This unwrap is "safe" in the sense that any
// command-line that doesn't fit 4G is surely broken.
u32::try_from(kernel_cmdline.num_bytes()).unwrap(),
);
}
let mut initrd_loader = InitrdLoader::new(system_table.boot_services(), handle, initrd_data)?;
let status = system_table
.boot_services()
.start_image(kernel_handle)
.status();
initrd_loader.uninstall(system_table.boot_services())?;
status.into()
}
#[entry]
fn main(handle: Handle, mut system_table: SystemTable<Boot>) -> Status {
uefi_services::init(&mut system_table).unwrap();
print_logo(system_table.stdout()).unwrap();
let config: EmbeddedConfiguration =
EmbeddedConfiguration::new(&mut booted_image_file(system_table.boot_services()).unwrap())
.expect("Failed to extract configuration from binary. Did you run lanzatool?");
let kernel_data;
let initrd_data;
{
let mut file_system = system_table
.boot_services()
.get_image_file_system(handle)
.expect("Failed to get file system handle");
let mut root = file_system
.open_volume()
.expect("Failed to find ESP root directory");
let mut kernel_file = root
.open(
&config.kernel_filename,
FileMode::Read,
FileAttribute::empty(),
)
.expect("Failed to open kernel file for reading")
.into_regular_file()
.expect("Kernel is not a regular file");
kernel_data = read_all(&mut kernel_file).expect("Failed to read kernel file into memory");
let mut initrd_file = root
.open(
&config.initrd_filename,
FileMode::Read,
FileAttribute::empty(),
)
.expect("Failed to open initrd for reading")
.into_regular_file()
.expect("Initrd is not a regular file");
initrd_data = read_all(&mut initrd_file).expect("Failed to read kernel file into memory");
}
let is_kernel_hash_correct = Sha256::digest(&kernel_data) == config.kernel_hash;
let is_initrd_hash_correct = Sha256::digest(&initrd_data) == config.initrd_hash;
if !is_kernel_hash_correct {
system_table
.stdout()
.output_string(cstr16!("Hash mismatch for kernel!\r\n"))
.unwrap();
}
if !is_initrd_hash_correct {
system_table
.stdout()
.output_string(cstr16!("Hash mismatch for initrd!\r\n"))
.unwrap();
}
if is_kernel_hash_correct && is_initrd_hash_correct {
boot_linux_unchecked(
handle,
system_table,
kernel_data,
&config.cmdline,
initrd_data,
)
.status()
} else {
// There is no good way to detect whether Secure Boot is
// enabled. This is unfortunate, because we want to give the
// user a way to recover from hash mismatches when Secure Boot
// is off.
//
// So in case we get a hash mismatch, we will try to load the
// Linux image using LoadImage. What happens then depends on
// whether Secure Boot is enabled:
//
// **With Secure Boot**, the firmware will reject loading the
// image with status::SECURITY_VIOLATION.
//
// **Without Secure Boot**, the firmware will just load the
// Linux kernel.
//
// This is the behavior we want. A slight turd is that we
// increase the attack surface here by exposing the unverfied
// Linux image to the UEFI firmware. But in case the PE loader
// of the firmware is broken, we have little hope of security
// anyway.
system_table
.stdout()
.output_string(cstr16!("WARNING: Trying to continue as non-Secure Boot. This will fail when Secure Boot is enabled.\r\n"))
.unwrap();
boot_linux_uefi(
handle,
system_table,
kernel_data,
&config.cmdline,
initrd_data,
)
.status()
}
}