Kernels and initrds on the ESP are now content-addressed. By definition,
it is impossible for two different kernels or initrds to ever end up at
the same place, even in the presence of changing initrd secrets or other
unreproducibility.
The basic advantage of this is that installing the kernel or initrd for
a generation can never break another generation. In turn, this enables
the following two improvements:
* All generations can be installed independently. In particular, the
installation can be performed in one pass, one generation at a time.
As a result, the code is significantly simplified, and memory usage
(due to the temporary files) does not grow with the number of
generations any more.
* Generations that already have their files in place on the ESP do not
need to be reinstalled. This will be taken advantage of in a
subsequent commit.
Architecture is now a generic structure that can be specialized
via an "external" trait for generating the paths you care about
depending on your target bootloader.
systemd-boot is now installed once for many generations rather than multiple times.
This means it is not really possible to manage different system in the same "machine", which is a very
obscure usecase, theoretically possible, but not yet encountered.
We will hard fail in case of encountering different architectures in bootspec.
This should still be compatible with cross-compiling systems in the future.