lanzaboote/rust/uefi/stub/src/thin.rs

196 lines
6.4 KiB
Rust
Raw Normal View History

use alloc::vec::Vec;
use log::warn;
use sha2::{Digest, Sha256};
2023-10-12 06:12:34 -04:00
use uefi::fs::FileSystem;
use uefi::{prelude::*, proto::loaded_image::LoadedImage, CStr16, CString16, Result};
use crate::common::{boot_linux_unchecked, extract_string};
use linux_bootloader::pe_section::pe_section;
use linux_bootloader::{linux_loader::InitrdLoader, uefi_helpers::booted_image_file};
type Hash = sha2::digest::Output<Sha256>;
/// The configuration that is embedded at build time.
///
/// After this stub is built, lzbt needs to embed configuration into the binary by adding PE
/// sections. This struct represents that information.
struct EmbeddedConfiguration {
/// The filename of the kernel to be booted. This filename is
/// relative to the root of the volume that contains the
/// lanzaboote binary.
kernel_filename: CString16,
/// The cryptographic hash of the kernel.
kernel_hash: Hash,
/// The filename of the initrd to be passed to the kernel. See
/// `kernel_filename` for how to interpret these filenames.
initrd_filename: CString16,
/// The cryptographic hash of the initrd. This hash is computed
/// over the whole PE binary, not only the embedded initrd.
initrd_hash: Hash,
/// The kernel command-line.
cmdline: CString16,
}
/// Extract a SHA256 hash from a PE section.
fn extract_hash(pe_data: &[u8], section: &str) -> Result<Hash> {
let array: [u8; 32] = pe_section(pe_data, section)
.ok_or(Status::INVALID_PARAMETER)?
.try_into()
.map_err(|_| Status::INVALID_PARAMETER)?;
Ok(array.into())
}
impl EmbeddedConfiguration {
fn new(file_data: &[u8]) -> Result<Self> {
Ok(Self {
kernel_filename: extract_string(file_data, ".kernelp")?,
kernel_hash: extract_hash(file_data, ".kernelh")?,
initrd_filename: extract_string(file_data, ".initrdp")?,
initrd_hash: extract_hash(file_data, ".initrdh")?,
cmdline: extract_string(file_data, ".cmdline")?,
})
}
}
/// Boot the Linux kernel via the UEFI PE loader.
///
/// This should only succeed when UEFI Secure Boot is off (or
/// broken...), because the Lanzaboote tool does not sign the kernel.
///
/// In essence, we can use this routine to detect whether Secure Boot
/// is actually enabled.
fn boot_linux_uefi(
handle: Handle,
system_table: SystemTable<Boot>,
kernel_data: Vec<u8>,
kernel_cmdline: &CStr16,
initrd_data: Vec<u8>,
) -> uefi::Result<()> {
let kernel_handle = system_table.boot_services().load_image(
handle,
uefi::table::boot::LoadImageSource::FromBuffer {
buffer: &kernel_data,
file_path: None,
},
)?;
let mut kernel_image = system_table
.boot_services()
.open_protocol_exclusive::<LoadedImage>(kernel_handle)?;
unsafe {
kernel_image.set_load_options(
kernel_cmdline.as_ptr() as *const u8,
// This unwrap is "safe" in the sense that any
// command-line that doesn't fit 4G is surely broken.
u32::try_from(kernel_cmdline.num_bytes()).unwrap(),
);
}
let mut initrd_loader = InitrdLoader::new(system_table.boot_services(), handle, initrd_data)?;
let status = system_table
.boot_services()
.start_image(kernel_handle)
.status();
initrd_loader.uninstall(system_table.boot_services())?;
status.to_result()
}
pub fn boot_linux(handle: Handle, mut system_table: SystemTable<Boot>) -> Status {
uefi_services::init(&mut system_table).unwrap();
// SAFETY: We get a slice that represents our currently running
// image and then parse the PE data structures from it. This is
// safe, because we don't touch any data in the data sections that
// might conceivably change while we look at the slice.
let config = unsafe {
EmbeddedConfiguration::new(
booted_image_file(system_table.boot_services())
.unwrap()
.as_slice(),
)
.expect("Failed to extract configuration from binary. Did you run lzbt?")
};
let kernel_data;
let initrd_data;
{
2023-10-12 06:12:34 -04:00
let file_system = system_table
.boot_services()
.get_image_file_system(handle)
.expect("Failed to get file system handle");
2023-10-12 06:12:34 -04:00
let mut file_system = FileSystem::new(file_system);
kernel_data = file_system
.read(&*config.kernel_filename)
.expect("Failed to read kernel file into memory");
initrd_data = file_system
.read(&*config.initrd_filename)
.expect("Failed to read initrd file into memory");
}
let is_kernel_hash_correct = Sha256::digest(&kernel_data) == config.kernel_hash;
let is_initrd_hash_correct = Sha256::digest(&initrd_data) == config.initrd_hash;
if !is_kernel_hash_correct {
warn!("Hash mismatch for kernel!");
}
if !is_initrd_hash_correct {
warn!("Hash mismatch for initrd!");
}
if is_kernel_hash_correct && is_initrd_hash_correct {
boot_linux_unchecked(
handle,
system_table,
kernel_data,
&config.cmdline,
initrd_data,
)
.status()
} else {
// There is no good way to detect whether Secure Boot is
// enabled. This is unfortunate, because we want to give the
// user a way to recover from hash mismatches when Secure Boot
// is off.
//
// So in case we get a hash mismatch, we will try to load the
// Linux image using LoadImage. What happens then depends on
// whether Secure Boot is enabled:
//
// **With Secure Boot**, the firmware will reject loading the
// image with status::SECURITY_VIOLATION.
//
// **Without Secure Boot**, the firmware will just load the
// Linux kernel.
//
// This is the behavior we want. A slight turd is that we
// increase the attack surface here by exposing the unverfied
// Linux image to the UEFI firmware. But in case the PE loader
// of the firmware is broken, we have little hope of security
// anyway.
warn!("Trying to continue as non-Secure Boot. This will fail when Secure Boot is enabled.");
boot_linux_uefi(
handle,
system_table,
kernel_data,
&config.cmdline,
initrd_data,
)
.status()
}
}