boring2/symm.rs

240 lines
6.8 KiB
Rust

use libc::{c_int, c_uint};
export encryptmode, decryptmode;
export encrypt, decrypt;
export libcrypto;
#[allow(non_camel_case_types)]
type EVP_CIPHER_CTX = *libc::c_void;
#[allow(non_camel_case_types)]
type EVP_CIPHER = *libc::c_void;
#[link_name = "crypto"]
#[abi = "cdecl"]
extern mod libcrypto {
fn EVP_CIPHER_CTX_new() -> EVP_CIPHER_CTX;
fn EVP_CIPHER_CTX_set_padding(ctx: EVP_CIPHER_CTX, padding: c_int);
fn EVP_aes_128_ecb() -> EVP_CIPHER;
fn EVP_aes_128_cbc() -> EVP_CIPHER;
fn EVP_aes_128_ctr() -> EVP_CIPHER;
fn EVP_aes_128_gcm() -> EVP_CIPHER;
fn EVP_aes_256_ecb() -> EVP_CIPHER;
fn EVP_aes_256_cbc() -> EVP_CIPHER;
fn EVP_aes_256_ctr() -> EVP_CIPHER;
fn EVP_aes_256_gcm() -> EVP_CIPHER;
fn EVP_rc4() -> EVP_CIPHER;
fn EVP_CipherInit(ctx: EVP_CIPHER_CTX, evp: EVP_CIPHER,
key: *u8, iv: *u8, mode: c_int);
fn EVP_CipherUpdate(ctx: EVP_CIPHER_CTX, outbuf: *mut u8,
outlen: &mut c_uint, inbuf: *u8, inlen: c_int);
fn EVP_CipherFinal(ctx: EVP_CIPHER_CTX, res: *mut u8, len: &mut c_int);
}
pub enum Mode {
Encrypt,
Decrypt,
}
#[allow(non_camel_case_types)]
pub enum Type {
AES_128_ECB,
AES_128_CBC,
AES_128_CTR,
AES_128_GCM,
AES_256_ECB,
AES_256_CBC,
AES_256_CTR,
AES_256_GCM,
RC4_128,
}
fn evpc(t: Type) -> (EVP_CIPHER, uint, uint) {
match t {
AES_128_ECB => (libcrypto::EVP_aes_128_ecb(), 16u, 16u),
AES_128_CBC => (libcrypto::EVP_aes_128_cbc(), 16u, 16u),
AES_128_CTR => (libcrypto::EVP_aes_128_ctr(), 16u, 16u),
AES_128_GCM => (libcrypto::EVP_aes_128_gcm(), 16u, 16u),
AES_256_ECB => (libcrypto::EVP_aes_256_ecb(), 32u, 16u),
AES_256_CBC => (libcrypto::EVP_aes_256_cbc(), 32u, 16u),
AES_256_CTR => (libcrypto::EVP_aes_256_ctr(), 32u, 16u),
AES_256_GCM => (libcrypto::EVP_aes_256_gcm(), 32u, 16u),
RC4_128 => (libcrypto::EVP_rc4(), 16u, 0u),
}
}
/// Represents a symmetric cipher context.
pub struct Crypter {
priv evp: EVP_CIPHER,
priv ctx: EVP_CIPHER_CTX,
priv keylen: uint,
priv blocksize: uint
}
pub fn Crypter(t: Type) -> Crypter {
let ctx = libcrypto::EVP_CIPHER_CTX_new();
let (evp, keylen, blocksz) = evpc(t);
Crypter { evp: evp, ctx: ctx, keylen: keylen, blocksize: blocksz }
}
pub impl Crypter {
/**
* Enables or disables padding. If padding is disabled, total amount of
* data encrypted must be a multiple of block size.
*/
fn pad(padding: bool) {
if self.blocksize > 0 {
let v = if padding { 1 } else { 0 } as c_int;
libcrypto::EVP_CIPHER_CTX_set_padding(self.ctx, v);
}
}
/**
* Initializes this crypter.
*/
fn init(mode: Mode, key: &[u8], iv: &[u8]) unsafe {
let mode = match mode {
Encrypt => 1 as c_int,
Decrypt => 0 as c_int,
};
assert key.len() == self.keylen;
do vec::as_imm_buf(key) |pkey, _len| {
do vec::as_imm_buf(iv) |piv, _len| {
libcrypto::EVP_CipherInit(
self.ctx,
self.evp,
pkey,
piv,
mode
)
}
}
}
/**
* Update this crypter with more data to encrypt or decrypt. Returns
* encrypted or decrypted bytes.
*/
fn update(data: &[u8]) -> ~[u8] unsafe {
do vec::as_imm_buf(data) |pdata, len| {
let mut res = vec::from_elem(len + self.blocksize, 0u8);
let reslen = do vec::as_mut_buf(res) |pres, _len| {
let mut reslen = (len + self.blocksize) as u32;
libcrypto::EVP_CipherUpdate(
self.ctx,
pres,
&mut reslen,
pdata,
len as c_int
);
reslen
};
vec::slice(res, 0u, reslen as uint)
}
}
/**
* Finish crypting. Returns the remaining partial block of output, if any.
*/
fn final() -> ~[u8] unsafe {
let res = vec::to_mut(vec::from_elem(self.blocksize, 0u8));
let reslen = do vec::as_mut_buf(res) |pres, _len| {
let mut reslen = self.blocksize as c_int;
libcrypto::EVP_CipherFinal(self.ctx, pres, &mut reslen);
reslen
};
vec::slice(res, 0u, reslen as uint)
}
}
/**
* Encrypts data, using the specified crypter type in encrypt mode with the
* specified key and iv; returns the resulting (encrypted) data.
*/
fn encrypt(t: Type, key: &[u8], iv: ~[u8], data: &[u8]) -> ~[u8] {
let c = Crypter(t);
c.init(Encrypt, key, iv);
let r = c.update(data);
let rest = c.final();
r + rest
}
/**
* Decrypts data, using the specified crypter type in decrypt mode with the
* specified key and iv; returns the resulting (decrypted) data.
*/
fn decrypt(t: Type, key: &[u8], iv: ~[u8], data: &[u8]) -> ~[u8] {
let c = Crypter(t);
c.init(Decrypt, key, iv);
let r = c.update(data);
let rest = c.final();
r + rest
}
#[cfg(test)]
mod tests {
use hex::FromHex;
// Test vectors from FIPS-197:
// http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
#[test]
fn test_aes_256_ecb() {
let k0 =
~[ 0x00u8, 0x01u8, 0x02u8, 0x03u8, 0x04u8, 0x05u8, 0x06u8, 0x07u8,
0x08u8, 0x09u8, 0x0au8, 0x0bu8, 0x0cu8, 0x0du8, 0x0eu8, 0x0fu8,
0x10u8, 0x11u8, 0x12u8, 0x13u8, 0x14u8, 0x15u8, 0x16u8, 0x17u8,
0x18u8, 0x19u8, 0x1au8, 0x1bu8, 0x1cu8, 0x1du8, 0x1eu8, 0x1fu8 ];
let p0 =
~[ 0x00u8, 0x11u8, 0x22u8, 0x33u8, 0x44u8, 0x55u8, 0x66u8, 0x77u8,
0x88u8, 0x99u8, 0xaau8, 0xbbu8, 0xccu8, 0xddu8, 0xeeu8, 0xffu8 ];
let c0 =
~[ 0x8eu8, 0xa2u8, 0xb7u8, 0xcau8, 0x51u8, 0x67u8, 0x45u8, 0xbfu8,
0xeau8, 0xfcu8, 0x49u8, 0x90u8, 0x4bu8, 0x49u8, 0x60u8, 0x89u8 ];
let c = Crypter(AES_256_ECB);
c.init(Encrypt, k0, ~[]);
c.pad(false);
let r0 = c.update(p0) + c.final();
assert(r0 == c0);
c.init(Decrypt, k0, ~[]);
c.pad(false);
let p1 = c.update(r0) + c.final();
assert(p1 == p0);
}
fn cipher_test(ciphertype: Type, pt: ~str, ct: ~str, key: ~str, iv: ~str) {
let cipher = Crypter(ciphertype);
cipher.init(Encrypt, key.from_hex(), iv.from_hex());
let computed = cipher.update(pt.from_hex());
assert computed == ct.from_hex();
}
#[test]
fn test_rc4() {
let pt = ~"0000000000000000000000000000000000000000000000000000000000000000000000000000";
let ct = ~"A68686B04D686AA107BD8D4CAB191A3EEC0A6294BC78B60F65C25CB47BD7BB3A48EFC4D26BE4";
let key = ~"97CD440324DA5FD1F7955C1C13B6B466";
let iv = ~"";
cipher_test(RC4_128, pt, ct, key, iv);
}
}