boring2/src/crypto/pkey.rs

429 lines
12 KiB
Rust

use libc::{c_char, c_int, c_uint};
use libc;
use std::mem;
use std::ptr;
use crypto::hash::{HashType, MD5, SHA1, SHA224, SHA256, SHA384, SHA512, RIPEMD160};
#[allow(non_camel_case_types)]
pub type EVP_PKEY = *mut libc::c_void;
#[allow(non_camel_case_types)]
pub type RSA = *mut libc::c_void;
#[link(name = "crypto")]
extern {
fn EVP_PKEY_new() -> *mut EVP_PKEY;
fn EVP_PKEY_free(k: *mut EVP_PKEY);
fn EVP_PKEY_assign(pkey: *mut EVP_PKEY, typ: c_int, key: *const c_char) -> c_int;
fn EVP_PKEY_get1_RSA(k: *mut EVP_PKEY) -> *mut RSA;
fn EVP_PKEY_set1_RSA(k: *mut EVP_PKEY, r: *mut RSA) -> c_int;
fn i2d_RSA_PUBKEY(k: *mut RSA, buf: *const *mut u8) -> c_int;
fn d2i_RSA_PUBKEY(k: *const *mut RSA, buf: *const *const u8, len: c_uint) -> *mut RSA;
fn i2d_RSAPrivateKey(k: *mut RSA, buf: *const *mut u8) -> c_int;
fn d2i_RSAPrivateKey(k: *const *mut RSA, buf: *const *const u8, len: c_uint) -> *mut RSA;
fn RSA_generate_key(modsz: c_uint, e: c_uint, cb: *const u8, cbarg: *const u8) -> *mut RSA;
fn RSA_size(k: *mut RSA) -> c_uint;
fn RSA_public_encrypt(flen: c_uint, from: *const u8, to: *mut u8, k: *mut RSA,
pad: c_int) -> c_int;
fn RSA_private_decrypt(flen: c_uint, from: *const u8, to: *mut u8, k: *mut RSA,
pad: c_int) -> c_int;
fn RSA_sign(t: c_int, m: *const u8, mlen: c_uint, sig: *mut u8, siglen: *mut c_uint,
k: *mut RSA) -> c_int;
fn RSA_verify(t: c_int, m: *const u8, mlen: c_uint, sig: *const u8, siglen: c_uint,
k: *mut RSA) -> c_int;
}
enum Parts {
Neither,
Public,
Both
}
/// Represents a role an asymmetric key might be appropriate for.
pub enum Role {
Encrypt,
Decrypt,
Sign,
Verify
}
/// Type of encryption padding to use.
pub enum EncryptionPadding {
OAEP,
PKCS1v15
}
fn openssl_padding_code(padding: EncryptionPadding) -> c_int {
match padding {
OAEP => 4,
PKCS1v15 => 1
}
}
fn openssl_hash_nid(hash: HashType) -> c_int {
match hash {
MD5 => 4, // NID_md5,
SHA1 => 64, // NID_sha1
SHA224 => 675, // NID_sha224
SHA256 => 672, // NID_sha256
SHA384 => 673, // NID_sha384
SHA512 => 674, // NID_sha512
RIPEMD160 => 117, // NID_ripemd160
}
}
pub struct PKey {
evp: *mut EVP_PKEY,
parts: Parts,
}
/// Represents a public key, optionally with a private key attached.
impl PKey {
pub fn new() -> PKey {
unsafe {
PKey {
evp: EVP_PKEY_new(),
parts: Neither,
}
}
}
fn _tostr(&self, f: unsafe extern "C" fn(*mut RSA, *const *mut u8) -> c_int) -> Vec<u8> {
unsafe {
let rsa = EVP_PKEY_get1_RSA(self.evp);
let len = f(rsa, ptr::null());
if len < 0 as c_int { return vec!(); }
let mut s = Vec::from_elem(len as uint, 0u8);
let r = f(rsa, &s.as_mut_ptr());
s.truncate(r as uint);
s
}
}
fn _fromstr(&mut self, s: &[u8], f: unsafe extern "C" fn(*const *mut RSA, *const *const u8, c_uint) -> *mut RSA) {
unsafe {
let rsa = ptr::null_mut();
f(&rsa, &s.as_ptr(), s.len() as c_uint);
EVP_PKEY_set1_RSA(self.evp, rsa);
}
}
pub fn gen(&mut self, keysz: uint) {
unsafe {
let rsa = RSA_generate_key(
keysz as c_uint,
65537u as c_uint,
ptr::null(),
ptr::null()
);
// XXX: 6 == NID_rsaEncryption
EVP_PKEY_assign(
self.evp,
6 as c_int,
mem::transmute(rsa));
self.parts = Both;
}
}
/**
* Returns a serialized form of the public key, suitable for load_pub().
*/
pub fn save_pub(&self) -> Vec<u8> {
self._tostr(i2d_RSA_PUBKEY)
}
/**
* Loads a serialized form of the public key, as produced by save_pub().
*/
pub fn load_pub(&mut self, s: &[u8]) {
self._fromstr(s, d2i_RSA_PUBKEY);
self.parts = Public;
}
/**
* Returns a serialized form of the public and private keys, suitable for
* load_priv().
*/
pub fn save_priv(&self) -> Vec<u8> {
self._tostr(i2d_RSAPrivateKey)
}
/**
* Loads a serialized form of the public and private keys, as produced by
* save_priv().
*/
pub fn load_priv(&mut self, s: &[u8]) {
self._fromstr(s, d2i_RSAPrivateKey);
self.parts = Both;
}
/**
* Returns the size of the public key modulus.
*/
pub fn size(&self) -> uint {
unsafe {
RSA_size(EVP_PKEY_get1_RSA(self.evp)) as uint
}
}
/**
* Returns whether this pkey object can perform the specified role.
*/
pub fn can(&self, r: Role) -> bool {
match r {
Encrypt =>
match self.parts {
Neither => false,
_ => true,
},
Verify =>
match self.parts {
Neither => false,
_ => true,
},
Decrypt =>
match self.parts {
Both => true,
_ => false,
},
Sign =>
match self.parts {
Both => true,
_ => false,
},
}
}
/**
* Returns the maximum amount of data that can be encrypted by an encrypt()
* call.
*/
pub fn max_data(&self) -> uint {
unsafe {
let rsa = EVP_PKEY_get1_RSA(self.evp);
let len = RSA_size(rsa);
// 41 comes from RSA_public_encrypt(3) for OAEP
len as uint - 41u
}
}
pub fn encrypt_with_padding(&self, s: &[u8], padding: EncryptionPadding) -> Vec<u8> {
unsafe {
let rsa = EVP_PKEY_get1_RSA(self.evp);
let len = RSA_size(rsa);
assert!(s.len() < self.max_data());
let mut r = Vec::from_elem(len as uint + 1u, 0u8);
let rv = RSA_public_encrypt(
s.len() as c_uint,
s.as_ptr(),
r.as_mut_ptr(),
rsa,
openssl_padding_code(padding));
if rv < 0 as c_int {
vec!()
} else {
r.truncate(rv as uint);
r
}
}
}
pub fn decrypt_with_padding(&self, s: &[u8], padding: EncryptionPadding) -> Vec<u8> {
unsafe {
let rsa = EVP_PKEY_get1_RSA(self.evp);
let len = RSA_size(rsa);
assert_eq!(s.len() as c_uint, RSA_size(rsa));
let mut r = Vec::from_elem(len as uint + 1u, 0u8);
let rv = RSA_private_decrypt(
s.len() as c_uint,
s.as_ptr(),
r.as_mut_ptr(),
rsa,
openssl_padding_code(padding));
if rv < 0 as c_int {
vec!()
} else {
r.truncate(rv as uint);
r
}
}
}
/**
* Encrypts data using OAEP padding, returning the encrypted data. The
* supplied data must not be larger than max_data().
*/
pub fn encrypt(&self, s: &[u8]) -> Vec<u8> { self.encrypt_with_padding(s, OAEP) }
/**
* Decrypts data, expecting OAEP padding, returning the decrypted data.
*/
pub fn decrypt(&self, s: &[u8]) -> Vec<u8> { self.decrypt_with_padding(s, OAEP) }
/**
* Signs data, using OpenSSL's default scheme and sha256. Unlike encrypt(),
* can process an arbitrary amount of data; returns the signature.
*/
pub fn sign(&self, s: &[u8]) -> Vec<u8> { self.sign_with_hash(s, SHA256) }
/**
* Verifies a signature s (using OpenSSL's default scheme and sha256) on a
* message m. Returns true if the signature is valid, and false otherwise.
*/
pub fn verify(&self, m: &[u8], s: &[u8]) -> bool { self.verify_with_hash(m, s, SHA256) }
pub fn sign_with_hash(&self, s: &[u8], hash: HashType) -> Vec<u8> {
unsafe {
let rsa = EVP_PKEY_get1_RSA(self.evp);
let mut len = RSA_size(rsa);
let mut r = Vec::from_elem(len as uint + 1u, 0u8);
let rv = RSA_sign(
openssl_hash_nid(hash),
s.as_ptr(),
s.len() as c_uint,
r.as_mut_ptr(),
&mut len,
rsa);
if rv < 0 as c_int {
vec!()
} else {
r.truncate(len as uint);
r
}
}
}
pub fn verify_with_hash(&self, m: &[u8], s: &[u8], hash: HashType) -> bool {
unsafe {
let rsa = EVP_PKEY_get1_RSA(self.evp);
let rv = RSA_verify(
openssl_hash_nid(hash),
m.as_ptr(),
m.len() as c_uint,
s.as_ptr(),
s.len() as c_uint,
rsa
);
rv == 1 as c_int
}
}
}
impl Drop for PKey {
fn drop(&mut self) {
unsafe {
EVP_PKEY_free(self.evp);
}
}
}
#[cfg(test)]
mod tests {
use crypto::hash::{MD5, SHA1};
#[test]
fn test_gen_pub() {
let mut k0 = super::PKey::new();
let mut k1 = super::PKey::new();
k0.gen(512u);
k1.load_pub(k0.save_pub().as_slice());
assert_eq!(k0.save_pub(), k1.save_pub());
assert_eq!(k0.size(), k1.size());
assert!(k0.can(super::Encrypt));
assert!(k0.can(super::Decrypt));
assert!(k0.can(super::Verify));
assert!(k0.can(super::Sign));
assert!(k1.can(super::Encrypt));
assert!(!k1.can(super::Decrypt));
assert!(k1.can(super::Verify));
assert!(!k1.can(super::Sign));
}
#[test]
fn test_gen_priv() {
let mut k0 = super::PKey::new();
let mut k1 = super::PKey::new();
k0.gen(512u);
k1.load_priv(k0.save_priv().as_slice());
assert_eq!(k0.save_priv(), k1.save_priv());
assert_eq!(k0.size(), k1.size());
assert!(k0.can(super::Encrypt));
assert!(k0.can(super::Decrypt));
assert!(k0.can(super::Verify));
assert!(k0.can(super::Sign));
assert!(k1.can(super::Encrypt));
assert!(k1.can(super::Decrypt));
assert!(k1.can(super::Verify));
assert!(k1.can(super::Sign));
}
#[test]
fn test_encrypt() {
let mut k0 = super::PKey::new();
let mut k1 = super::PKey::new();
let msg = vec!(0xdeu8, 0xadu8, 0xd0u8, 0x0du8);
k0.gen(512u);
k1.load_pub(k0.save_pub().as_slice());
let emsg = k1.encrypt(msg.as_slice());
let dmsg = k0.decrypt(emsg.as_slice());
assert!(msg == dmsg);
}
#[test]
fn test_encrypt_pkcs() {
let mut k0 = super::PKey::new();
let mut k1 = super::PKey::new();
let msg = vec!(0xdeu8, 0xadu8, 0xd0u8, 0x0du8);
k0.gen(512u);
k1.load_pub(k0.save_pub().as_slice());
let emsg = k1.encrypt_with_padding(msg.as_slice(), super::PKCS1v15);
let dmsg = k0.decrypt_with_padding(emsg.as_slice(), super::PKCS1v15);
assert!(msg == dmsg);
}
#[test]
fn test_sign() {
let mut k0 = super::PKey::new();
let mut k1 = super::PKey::new();
let msg = vec!(0xdeu8, 0xadu8, 0xd0u8, 0x0du8);
k0.gen(512u);
k1.load_pub(k0.save_pub().as_slice());
let sig = k0.sign(msg.as_slice());
let rv = k1.verify(msg.as_slice(), sig.as_slice());
assert!(rv == true);
}
#[test]
fn test_sign_hashes() {
let mut k0 = super::PKey::new();
let mut k1 = super::PKey::new();
let msg = vec!(0xdeu8, 0xadu8, 0xd0u8, 0x0du8);
k0.gen(512u);
k1.load_pub(k0.save_pub().as_slice());
let sig = k0.sign_with_hash(msg.as_slice(), MD5);
assert!(k1.verify_with_hash(msg.as_slice(), sig.as_slice(), MD5));
assert!(!k1.verify_with_hash(msg.as_slice(), sig.as_slice(), SHA1));
}
}