boring2/openssl/src/sign.rs

879 lines
20 KiB
Rust

//! Message signatures.
//!
//! The `Signer` allows for the computation of cryptographic signatures of
//! data given a private key. The `Verifier` can then be used with the
//! corresponding public key to verify the integrity and authenticity of that
//! data given the signature.
//!
//! # Examples
//!
//! Sign and verify data given an RSA keypair:
//!
//! ```rust
//! use openssl::sign::{Signer, Verifier};
//! use openssl::rsa::Rsa;
//! use openssl::pkey::PKey;
//! use openssl::hash::MessageDigest;
//!
//! // Generate a keypair
//! let keypair = Rsa::generate(2048).unwrap();
//! let keypair = PKey::from_rsa(keypair).unwrap();
//!
//! let data = b"hello, world!";
//! let data2 = b"hola, mundo!";
//!
//! // Sign the data
//! let mut signer = Signer::new(MessageDigest::sha256(), &keypair).unwrap();
//! signer.update(data).unwrap();
//! signer.update(data2).unwrap();
//! let signature = signer.finish().unwrap();
//!
//! // Verify the data
//! let mut verifier = Verifier::new(MessageDigest::sha256(), &keypair).unwrap();
//! verifier.update(data).unwrap();
//! verifier.update(data2).unwrap();
//! assert!(verifier.finish(&signature).unwrap());
//! ```
//!
//! Compute an HMAC:
//!
//! ```rust
//! use openssl::hash::MessageDigest;
//! use openssl::memcmp;
//! use openssl::pkey::PKey;
//! use openssl::sign::Signer;
//!
//! // Create a PKey
//! let key = PKey::hmac(b"my secret").unwrap();
//!
//! let data = b"hello, world!";
//! let data2 = b"hola, mundo!";
//!
//! // Compute the HMAC
//! let mut signer = Signer::new(MessageDigest::sha256(), &key).unwrap();
//! signer.update(data).unwrap();
//! signer.update(data2).unwrap();
//! let hmac = signer.finish().unwrap();
//!
//! // `Verifier` cannot be used with HMACs; use the `memcmp::eq` function instead
//! //
//! // Do not simply check for equality with `==`!
//! # let target = hmac.clone();
//! assert!(memcmp::eq(&hmac, &target));
//! ```
use ffi;
use foreign_types::ForeignTypeRef;
use std::io::{self, Write};
use std::marker::PhantomData;
use std::ptr;
use {cvt, cvt_p};
use hash::MessageDigest;
use pkey::{PKeyRef, PKeyCtxRef};
use error::ErrorStack;
#[cfg(ossl110)]
use ffi::{EVP_MD_CTX_new, EVP_MD_CTX_free};
#[cfg(any(ossl101, ossl102))]
use ffi::{EVP_MD_CTX_create as EVP_MD_CTX_new, EVP_MD_CTX_destroy as EVP_MD_CTX_free};
pub struct Signer<'a> {
md_ctx: *mut ffi::EVP_MD_CTX,
pkey_ctx: *mut ffi::EVP_PKEY_CTX,
pkey_pd: PhantomData<&'a PKeyRef>,
}
impl<'a> Drop for Signer<'a> {
fn drop(&mut self) {
// pkey_ctx is owned by the md_ctx, so no need to explicitly free it.
unsafe {
EVP_MD_CTX_free(self.md_ctx);
}
}
}
impl<'a> Signer<'a> {
pub fn new(type_: MessageDigest, pkey: &'a PKeyRef) -> Result<Signer<'a>, ErrorStack> {
unsafe {
ffi::init();
let ctx = try!(cvt_p(EVP_MD_CTX_new()));
let mut pctx: *mut ffi::EVP_PKEY_CTX = ptr::null_mut();
let r = ffi::EVP_DigestSignInit(
ctx,
&mut pctx,
type_.as_ptr(),
ptr::null_mut(),
pkey.as_ptr(),
);
if r != 1 {
EVP_MD_CTX_free(ctx);
return Err(ErrorStack::get());
}
assert!(!pctx.is_null());
Ok(Signer {
md_ctx: ctx,
pkey_ctx: pctx,
pkey_pd: PhantomData,
})
}
}
pub fn pkey_ctx(&self) -> &PKeyCtxRef {
unsafe { PKeyCtxRef::from_ptr(self.pkey_ctx) }
}
pub fn pkey_ctx_mut(&mut self) -> &mut PKeyCtxRef {
unsafe { PKeyCtxRef::from_ptr_mut(self.pkey_ctx) }
}
pub fn update(&mut self, buf: &[u8]) -> Result<(), ErrorStack> {
unsafe {
cvt(ffi::EVP_DigestUpdate(
self.md_ctx,
buf.as_ptr() as *const _,
buf.len(),
)).map(|_| ())
}
}
pub fn finish(&self) -> Result<Vec<u8>, ErrorStack> {
unsafe {
let mut len = 0;
try!(cvt(ffi::EVP_DigestSignFinal(
self.md_ctx,
ptr::null_mut(),
&mut len,
)));
let mut buf = vec![0; len];
try!(cvt(ffi::EVP_DigestSignFinal(
self.md_ctx,
buf.as_mut_ptr() as *mut _,
&mut len,
)));
// The advertised length is not always equal to the real length for things like DSA
buf.truncate(len);
Ok(buf)
}
}
}
impl<'a> Write for Signer<'a> {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
try!(self.update(buf));
Ok(buf.len())
}
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
pub struct Verifier<'a> {
md_ctx: *mut ffi::EVP_MD_CTX,
pkey_ctx: *mut ffi::EVP_PKEY_CTX,
pkey_pd: PhantomData<&'a PKeyRef>,
}
impl<'a> Drop for Verifier<'a> {
fn drop(&mut self) {
// pkey_ctx is owned by the md_ctx, so no need to explicitly free it.
unsafe {
EVP_MD_CTX_free(self.md_ctx);
}
}
}
impl<'a> Verifier<'a> {
pub fn new(type_: MessageDigest, pkey: &'a PKeyRef) -> Result<Verifier<'a>, ErrorStack> {
unsafe {
ffi::init();
let ctx = try!(cvt_p(EVP_MD_CTX_new()));
let mut pctx: *mut ffi::EVP_PKEY_CTX = ptr::null_mut();
let r = ffi::EVP_DigestVerifyInit(
ctx,
&mut pctx,
type_.as_ptr(),
ptr::null_mut(),
pkey.as_ptr(),
);
if r != 1 {
EVP_MD_CTX_free(ctx);
return Err(ErrorStack::get());
}
assert!(!pctx.is_null());
Ok(Verifier {
md_ctx: ctx,
pkey_ctx: pctx,
pkey_pd: PhantomData,
})
}
}
pub fn pkey_ctx(&self) -> &PKeyCtxRef {
unsafe { PKeyCtxRef::from_ptr(self.pkey_ctx) }
}
pub fn pkey_ctx_mut(&mut self) -> &mut PKeyCtxRef {
unsafe { PKeyCtxRef::from_ptr_mut(self.pkey_ctx) }
}
pub fn update(&mut self, buf: &[u8]) -> Result<(), ErrorStack> {
unsafe {
cvt(ffi::EVP_DigestUpdate(
self.md_ctx,
buf.as_ptr() as *const _,
buf.len(),
)).map(|_| ())
}
}
pub fn finish(&self, signature: &[u8]) -> Result<bool, ErrorStack> {
unsafe {
let r =
EVP_DigestVerifyFinal(self.md_ctx, signature.as_ptr() as *const _, signature.len());
match r {
1 => Ok(true),
0 => {
ErrorStack::get(); // discard error stack
Ok(false)
}
_ => Err(ErrorStack::get()),
}
}
}
}
impl<'a> Write for Verifier<'a> {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
try!(self.update(buf));
Ok(buf.len())
}
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
#[cfg(not(ossl101))]
use ffi::EVP_DigestVerifyFinal;
#[cfg(ossl101)]
#[allow(bad_style)]
unsafe fn EVP_DigestVerifyFinal(
ctx: *mut ffi::EVP_MD_CTX,
sigret: *const ::libc::c_uchar,
siglen: ::libc::size_t,
) -> ::libc::c_int {
ffi::EVP_DigestVerifyFinal(ctx, sigret as *mut _, siglen)
}
#[cfg(test)]
mod test {
use hex::FromHex;
use std::iter;
use hash::MessageDigest;
use sign::{Signer, Verifier};
use ec::{EcGroup, EcKey};
use nid;
use rsa::{Rsa, PKCS1_PADDING};
use dsa::Dsa;
use pkey::PKey;
static INPUT: &'static [u8] = &[
101,
121,
74,
104,
98,
71,
99,
105,
79,
105,
74,
83,
85,
122,
73,
49,
78,
105,
74,
57,
46,
101,
121,
74,
112,
99,
51,
77,
105,
79,
105,
74,
113,
98,
50,
85,
105,
76,
65,
48,
75,
73,
67,
74,
108,
101,
72,
65,
105,
79,
106,
69,
122,
77,
68,
65,
52,
77,
84,
107,
122,
79,
68,
65,
115,
68,
81,
111,
103,
73,
109,
104,
48,
100,
72,
65,
54,
76,
121,
57,
108,
101,
71,
70,
116,
99,
71,
120,
108,
76,
109,
78,
118,
98,
83,
57,
112,
99,
49,
57,
121,
98,
50,
57,
48,
73,
106,
112,
48,
99,
110,
86,
108,
102,
81,
];
static SIGNATURE: &'static [u8] = &[
112,
46,
33,
137,
67,
232,
143,
209,
30,
181,
216,
45,
191,
120,
69,
243,
65,
6,
174,
27,
129,
255,
247,
115,
17,
22,
173,
209,
113,
125,
131,
101,
109,
66,
10,
253,
60,
150,
238,
221,
115,
162,
102,
62,
81,
102,
104,
123,
0,
11,
135,
34,
110,
1,
135,
237,
16,
115,
249,
69,
229,
130,
173,
252,
239,
22,
216,
90,
121,
142,
232,
198,
109,
219,
61,
184,
151,
91,
23,
208,
148,
2,
190,
237,
213,
217,
217,
112,
7,
16,
141,
178,
129,
96,
213,
248,
4,
12,
167,
68,
87,
98,
184,
31,
190,
127,
249,
217,
46,
10,
231,
111,
36,
242,
91,
51,
187,
230,
244,
74,
230,
30,
177,
4,
10,
203,
32,
4,
77,
62,
249,
18,
142,
212,
1,
48,
121,
91,
212,
189,
59,
65,
238,
202,
208,
102,
171,
101,
25,
129,
253,
228,
141,
247,
127,
55,
45,
195,
139,
159,
175,
221,
59,
239,
177,
139,
93,
163,
204,
60,
46,
176,
47,
158,
58,
65,
214,
18,
202,
173,
21,
145,
18,
115,
160,
95,
35,
185,
232,
56,
250,
175,
132,
157,
105,
132,
41,
239,
90,
30,
136,
121,
130,
54,
195,
212,
14,
96,
69,
34,
165,
68,
200,
242,
122,
122,
45,
184,
6,
99,
209,
108,
247,
202,
234,
86,
222,
64,
92,
178,
33,
90,
69,
178,
194,
85,
102,
181,
90,
193,
167,
72,
160,
112,
223,
200,
163,
42,
70,
149,
67,
208,
25,
238,
251,
71,
];
#[test]
fn rsa_sign() {
let key = include_bytes!("../test/rsa.pem");
let private_key = Rsa::private_key_from_pem(key).unwrap();
let pkey = PKey::from_rsa(private_key).unwrap();
let mut signer = Signer::new(MessageDigest::sha256(), &pkey).unwrap();
assert_eq!(signer.pkey_ctx_mut().rsa_padding().unwrap(), PKCS1_PADDING);
signer
.pkey_ctx_mut()
.set_rsa_padding(PKCS1_PADDING)
.unwrap();
signer.update(INPUT).unwrap();
let result = signer.finish().unwrap();
assert_eq!(result, SIGNATURE);
}
#[test]
fn rsa_verify_ok() {
let key = include_bytes!("../test/rsa.pem");
let private_key = Rsa::private_key_from_pem(key).unwrap();
let pkey = PKey::from_rsa(private_key).unwrap();
let mut verifier = Verifier::new(MessageDigest::sha256(), &pkey).unwrap();
assert_eq!(
verifier.pkey_ctx_mut().rsa_padding().unwrap(),
PKCS1_PADDING
);
verifier.update(INPUT).unwrap();
assert!(verifier.finish(SIGNATURE).unwrap());
}
#[test]
fn rsa_verify_invalid() {
let key = include_bytes!("../test/rsa.pem");
let private_key = Rsa::private_key_from_pem(key).unwrap();
let pkey = PKey::from_rsa(private_key).unwrap();
let mut verifier = Verifier::new(MessageDigest::sha256(), &pkey).unwrap();
verifier.update(INPUT).unwrap();
verifier.update(b"foobar").unwrap();
assert!(!verifier.finish(SIGNATURE).unwrap());
}
#[test]
pub fn dsa_sign_verify() {
let input: Vec<u8> = (0..25).cycle().take(1024).collect();
let private_key = {
let key = include_bytes!("../test/dsa.pem");
PKey::from_dsa(Dsa::private_key_from_pem(key).unwrap()).unwrap()
};
let public_key = {
let key = include_bytes!("../test/dsa.pem.pub");
PKey::from_dsa(Dsa::public_key_from_pem(key).unwrap()).unwrap()
};
let mut signer = Signer::new(MessageDigest::sha1(), &private_key).unwrap();
signer.update(&input).unwrap();
let sig = signer.finish().unwrap();
let mut verifier = Verifier::new(MessageDigest::sha1(), &public_key).unwrap();
verifier.update(&input).unwrap();
assert!(verifier.finish(&sig).unwrap());
}
#[test]
pub fn dsa_sign_verify_fail() {
let input: Vec<u8> = (0..25).cycle().take(1024).collect();
let private_key = {
let key = include_bytes!("../test/dsa.pem");
PKey::from_dsa(Dsa::private_key_from_pem(key).unwrap()).unwrap()
};
let public_key = {
let key = include_bytes!("../test/dsa.pem.pub");
PKey::from_dsa(Dsa::public_key_from_pem(key).unwrap()).unwrap()
};
let mut signer = Signer::new(MessageDigest::sha1(), &private_key).unwrap();
signer.update(&input).unwrap();
let mut sig = signer.finish().unwrap();
sig[0] -= 1;
let mut verifier = Verifier::new(MessageDigest::sha1(), &public_key).unwrap();
verifier.update(&input).unwrap();
match verifier.finish(&sig) {
Ok(true) => panic!("unexpected success"),
Ok(false) | Err(_) => {}
}
}
fn test_hmac(ty: MessageDigest, tests: &[(Vec<u8>, Vec<u8>, Vec<u8>)]) {
for &(ref key, ref data, ref res) in tests.iter() {
let pkey = PKey::hmac(key).unwrap();
let mut signer = Signer::new(ty, &pkey).unwrap();
signer.update(data).unwrap();
assert_eq!(signer.finish().unwrap(), *res);
}
}
#[test]
fn hmac_md5() {
// test vectors from RFC 2202
let tests: [(Vec<u8>, Vec<u8>, Vec<u8>); 7] =
[
(
iter::repeat(0x0b_u8).take(16).collect(),
b"Hi There".to_vec(),
Vec::from_hex("9294727a3638bb1c13f48ef8158bfc9d").unwrap(),
),
(
b"Jefe".to_vec(),
b"what do ya want for nothing?".to_vec(),
Vec::from_hex("750c783e6ab0b503eaa86e310a5db738").unwrap(),
),
(
iter::repeat(0xaa_u8).take(16).collect(),
iter::repeat(0xdd_u8).take(50).collect(),
Vec::from_hex("56be34521d144c88dbb8c733f0e8b3f6").unwrap(),
),
(
Vec::from_hex("0102030405060708090a0b0c0d0e0f10111213141516171819").unwrap(),
iter::repeat(0xcd_u8).take(50).collect(),
Vec::from_hex("697eaf0aca3a3aea3a75164746ffaa79").unwrap(),
),
(
iter::repeat(0x0c_u8).take(16).collect(),
b"Test With Truncation".to_vec(),
Vec::from_hex("56461ef2342edc00f9bab995690efd4c").unwrap(),
),
(
iter::repeat(0xaa_u8).take(80).collect(),
b"Test Using Larger Than Block-Size Key - Hash Key First".to_vec(),
Vec::from_hex("6b1ab7fe4bd7bf8f0b62e6ce61b9d0cd").unwrap(),
),
(
iter::repeat(0xaa_u8).take(80).collect(),
b"Test Using Larger Than Block-Size Key \
and Larger Than One Block-Size Data"
.to_vec(),
Vec::from_hex("6f630fad67cda0ee1fb1f562db3aa53e").unwrap(),
),
];
test_hmac(MessageDigest::md5(), &tests);
}
#[test]
fn hmac_sha1() {
// test vectors from RFC 2202
let tests: [(Vec<u8>, Vec<u8>, Vec<u8>); 7] =
[
(
iter::repeat(0x0b_u8).take(20).collect(),
b"Hi There".to_vec(),
Vec::from_hex("b617318655057264e28bc0b6fb378c8ef146be00").unwrap(),
),
(
b"Jefe".to_vec(),
b"what do ya want for nothing?".to_vec(),
Vec::from_hex("effcdf6ae5eb2fa2d27416d5f184df9c259a7c79").unwrap(),
),
(
iter::repeat(0xaa_u8).take(20).collect(),
iter::repeat(0xdd_u8).take(50).collect(),
Vec::from_hex("125d7342b9ac11cd91a39af48aa17b4f63f175d3").unwrap(),
),
(
Vec::from_hex("0102030405060708090a0b0c0d0e0f10111213141516171819").unwrap(),
iter::repeat(0xcd_u8).take(50).collect(),
Vec::from_hex("4c9007f4026250c6bc8414f9bf50c86c2d7235da").unwrap(),
),
(
iter::repeat(0x0c_u8).take(20).collect(),
b"Test With Truncation".to_vec(),
Vec::from_hex("4c1a03424b55e07fe7f27be1d58bb9324a9a5a04").unwrap(),
),
(
iter::repeat(0xaa_u8).take(80).collect(),
b"Test Using Larger Than Block-Size Key - Hash Key First".to_vec(),
Vec::from_hex("aa4ae5e15272d00e95705637ce8a3b55ed402112").unwrap(),
),
(
iter::repeat(0xaa_u8).take(80).collect(),
b"Test Using Larger Than Block-Size Key \
and Larger Than One Block-Size Data"
.to_vec(),
Vec::from_hex("e8e99d0f45237d786d6bbaa7965c7808bbff1a91").unwrap(),
),
];
test_hmac(MessageDigest::sha1(), &tests);
}
#[test]
fn ec() {
let group = EcGroup::from_curve_name(nid::X9_62_PRIME256V1).unwrap();
let key = EcKey::generate(&group).unwrap();
let key = PKey::from_ec_key(key).unwrap();
let mut signer = Signer::new(MessageDigest::sha256(), &key).unwrap();
signer.update(b"hello world").unwrap();
let signature = signer.finish().unwrap();
let mut verifier = Verifier::new(MessageDigest::sha256(), &key).unwrap();
verifier.update(b"hello world").unwrap();
assert!(verifier.finish(&signature).unwrap());
}
}