619 lines
20 KiB
Rust
619 lines
20 KiB
Rust
//! Public/private key processing.
|
|
//!
|
|
//! Asymmetric public key algorithms solve the problem of establishing and sharing
|
|
//! secret keys to securely send and receive messages.
|
|
//! This system uses a pair of keys: a public key, which can be freely
|
|
//! distributed, and a private key, which is kept to oneself. An entity may
|
|
//! encrypt information using a user's public key. The encrypted information can
|
|
//! only be deciphered using that user's private key.
|
|
//!
|
|
//! This module offers support for five popular algorithms:
|
|
//!
|
|
//! * RSA
|
|
//!
|
|
//! * DSA
|
|
//!
|
|
//! * Diffie-Hellman
|
|
//!
|
|
//! * Elliptic Curves
|
|
//!
|
|
//! * HMAC
|
|
//!
|
|
//! These algorithms rely on hard mathematical problems - namely integer factorization,
|
|
//! discrete logarithms, and elliptic curve relationships - that currently do not
|
|
//! yield efficient solutions. This property ensures the security of these
|
|
//! cryptographic algorithms.
|
|
//!
|
|
//! # Example
|
|
//!
|
|
//! Generate a 2048-bit RSA public/private key pair and print the public key.
|
|
//!
|
|
//! ```rust
|
|
//! use boring::rsa::Rsa;
|
|
//! use boring::pkey::PKey;
|
|
//! use std::str;
|
|
//!
|
|
//! let rsa = Rsa::generate(2048).unwrap();
|
|
//! let pkey = PKey::from_rsa(rsa).unwrap();
|
|
//!
|
|
//! let pub_key: Vec<u8> = pkey.public_key_to_pem().unwrap();
|
|
//! println!("{:?}", str::from_utf8(pub_key.as_slice()).unwrap());
|
|
//! ```
|
|
|
|
use crate::ffi;
|
|
use foreign_types::{ForeignType, ForeignTypeRef};
|
|
use libc::{c_int, c_long};
|
|
use std::ffi::CString;
|
|
use std::fmt;
|
|
use std::mem;
|
|
use std::ptr;
|
|
|
|
use crate::bio::MemBioSlice;
|
|
use crate::dh::Dh;
|
|
use crate::dsa::Dsa;
|
|
use crate::ec::EcKey;
|
|
use crate::error::ErrorStack;
|
|
use crate::rsa::Rsa;
|
|
use crate::util::{invoke_passwd_cb, CallbackState};
|
|
use crate::{cvt, cvt_p};
|
|
|
|
/// A tag type indicating that a key only has parameters.
|
|
pub enum Params {}
|
|
|
|
/// A tag type indicating that a key only has public components.
|
|
pub enum Public {}
|
|
|
|
/// A tag type indicating that a key has private components.
|
|
pub enum Private {}
|
|
|
|
/// An identifier of a kind of key.
|
|
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
|
|
pub struct Id(c_int);
|
|
|
|
impl Id {
|
|
pub const RSA: Id = Id(ffi::EVP_PKEY_RSA);
|
|
pub const DSA: Id = Id(ffi::EVP_PKEY_DSA);
|
|
pub const DH: Id = Id(ffi::EVP_PKEY_DH);
|
|
pub const EC: Id = Id(ffi::EVP_PKEY_EC);
|
|
pub const ED25519: Id = Id(ffi::EVP_PKEY_ED25519);
|
|
pub const ED448: Id = Id(ffi::EVP_PKEY_ED448);
|
|
pub const X25519: Id = Id(ffi::EVP_PKEY_X25519);
|
|
pub const X448: Id = Id(ffi::EVP_PKEY_X448);
|
|
|
|
/// Creates a `Id` from an integer representation.
|
|
pub fn from_raw(value: c_int) -> Id {
|
|
Id(value)
|
|
}
|
|
|
|
/// Returns the integer representation of the `Id`.
|
|
#[allow(clippy::trivially_copy_pass_by_ref)]
|
|
pub fn as_raw(&self) -> c_int {
|
|
self.0
|
|
}
|
|
}
|
|
|
|
/// A trait indicating that a key has parameters.
|
|
#[allow(clippy::missing_safety_doc)]
|
|
pub unsafe trait HasParams {}
|
|
|
|
unsafe impl HasParams for Params {}
|
|
|
|
unsafe impl<T> HasParams for T where T: HasPublic {}
|
|
|
|
/// A trait indicating that a key has public components.
|
|
#[allow(clippy::missing_safety_doc)]
|
|
pub unsafe trait HasPublic {}
|
|
|
|
unsafe impl HasPublic for Public {}
|
|
|
|
unsafe impl<T> HasPublic for T where T: HasPrivate {}
|
|
|
|
/// A trait indicating that a key has private components.
|
|
#[allow(clippy::missing_safety_doc)]
|
|
pub unsafe trait HasPrivate {}
|
|
|
|
unsafe impl HasPrivate for Private {}
|
|
|
|
generic_foreign_type_and_impl_send_sync! {
|
|
type CType = ffi::EVP_PKEY;
|
|
fn drop = ffi::EVP_PKEY_free;
|
|
|
|
/// A public or private key.
|
|
pub struct PKey<T>;
|
|
/// Reference to [`PKey`].
|
|
pub struct PKeyRef<T>;
|
|
}
|
|
|
|
impl<T> ToOwned for PKeyRef<T> {
|
|
type Owned = PKey<T>;
|
|
|
|
fn to_owned(&self) -> PKey<T> {
|
|
unsafe {
|
|
EVP_PKEY_up_ref(self.as_ptr());
|
|
PKey::from_ptr(self.as_ptr())
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<T> PKeyRef<T> {
|
|
/// Returns a copy of the internal RSA key.
|
|
///
|
|
/// This corresponds to [`EVP_PKEY_get1_RSA`].
|
|
///
|
|
/// [`EVP_PKEY_get1_RSA`]: https://www.openssl.org/docs/man1.1.0/crypto/EVP_PKEY_get1_RSA.html
|
|
pub fn rsa(&self) -> Result<Rsa<T>, ErrorStack> {
|
|
unsafe {
|
|
let rsa = cvt_p(ffi::EVP_PKEY_get1_RSA(self.as_ptr()))?;
|
|
Ok(Rsa::from_ptr(rsa))
|
|
}
|
|
}
|
|
|
|
/// Returns a copy of the internal DSA key.
|
|
///
|
|
/// This corresponds to [`EVP_PKEY_get1_DSA`].
|
|
///
|
|
/// [`EVP_PKEY_get1_DSA`]: https://www.openssl.org/docs/man1.1.0/crypto/EVP_PKEY_get1_DSA.html
|
|
pub fn dsa(&self) -> Result<Dsa<T>, ErrorStack> {
|
|
unsafe {
|
|
let dsa = cvt_p(ffi::EVP_PKEY_get1_DSA(self.as_ptr()))?;
|
|
Ok(Dsa::from_ptr(dsa))
|
|
}
|
|
}
|
|
|
|
/// Returns a copy of the internal DH key.
|
|
///
|
|
/// This corresponds to [`EVP_PKEY_get1_DH`].
|
|
///
|
|
/// [`EVP_PKEY_get1_DH`]: https://www.openssl.org/docs/man1.1.0/crypto/EVP_PKEY_get1_DH.html
|
|
pub fn dh(&self) -> Result<Dh<T>, ErrorStack> {
|
|
unsafe {
|
|
let dh = cvt_p(ffi::EVP_PKEY_get1_DH(self.as_ptr()))?;
|
|
Ok(Dh::from_ptr(dh))
|
|
}
|
|
}
|
|
|
|
/// Returns a copy of the internal elliptic curve key.
|
|
///
|
|
/// This corresponds to [`EVP_PKEY_get1_EC_KEY`].
|
|
///
|
|
/// [`EVP_PKEY_get1_EC_KEY`]: https://www.openssl.org/docs/man1.1.0/crypto/EVP_PKEY_get1_EC_KEY.html
|
|
pub fn ec_key(&self) -> Result<EcKey<T>, ErrorStack> {
|
|
unsafe {
|
|
let ec_key = cvt_p(ffi::EVP_PKEY_get1_EC_KEY(self.as_ptr()))?;
|
|
Ok(EcKey::from_ptr(ec_key))
|
|
}
|
|
}
|
|
|
|
/// Returns the `Id` that represents the type of this key.
|
|
///
|
|
/// This corresponds to [`EVP_PKEY_id`].
|
|
///
|
|
/// [`EVP_PKEY_id`]: https://www.openssl.org/docs/man1.1.0/crypto/EVP_PKEY_id.html
|
|
pub fn id(&self) -> Id {
|
|
unsafe { Id::from_raw(ffi::EVP_PKEY_id(self.as_ptr())) }
|
|
}
|
|
|
|
/// Returns the maximum size of a signature in bytes.
|
|
///
|
|
/// This corresponds to [`EVP_PKEY_size`].
|
|
///
|
|
/// [`EVP_PKEY_size`]: https://www.openssl.org/docs/man1.1.1/man3/EVP_PKEY_size.html
|
|
pub fn size(&self) -> usize {
|
|
unsafe { ffi::EVP_PKEY_size(self.as_ptr()) as usize }
|
|
}
|
|
}
|
|
|
|
impl<T> PKeyRef<T>
|
|
where
|
|
T: HasPublic,
|
|
{
|
|
to_pem! {
|
|
/// Serializes the public key into a PEM-encoded SubjectPublicKeyInfo structure.
|
|
///
|
|
/// The output will have a header of `-----BEGIN PUBLIC KEY-----`.
|
|
///
|
|
/// This corresponds to [`PEM_write_bio_PUBKEY`].
|
|
///
|
|
/// [`PEM_write_bio_PUBKEY`]: https://www.openssl.org/docs/man1.1.0/crypto/PEM_write_bio_PUBKEY.html
|
|
public_key_to_pem,
|
|
ffi::PEM_write_bio_PUBKEY
|
|
}
|
|
|
|
to_der! {
|
|
/// Serializes the public key into a DER-encoded SubjectPublicKeyInfo structure.
|
|
///
|
|
/// This corresponds to [`i2d_PUBKEY`].
|
|
///
|
|
/// [`i2d_PUBKEY`]: https://www.openssl.org/docs/man1.1.0/crypto/i2d_PUBKEY.html
|
|
public_key_to_der,
|
|
ffi::i2d_PUBKEY
|
|
}
|
|
|
|
/// Returns the size of the key.
|
|
///
|
|
/// This corresponds to the bit length of the modulus of an RSA key, and the bit length of the
|
|
/// group order for an elliptic curve key, for example.
|
|
pub fn bits(&self) -> u32 {
|
|
unsafe { ffi::EVP_PKEY_bits(self.as_ptr()) as u32 }
|
|
}
|
|
|
|
/// Compares the public component of this key with another.
|
|
pub fn public_eq<U>(&self, other: &PKeyRef<U>) -> bool
|
|
where
|
|
U: HasPublic,
|
|
{
|
|
unsafe { ffi::EVP_PKEY_cmp(self.as_ptr(), other.as_ptr()) == 1 }
|
|
}
|
|
}
|
|
|
|
impl<T> PKeyRef<T>
|
|
where
|
|
T: HasPrivate,
|
|
{
|
|
private_key_to_pem! {
|
|
/// Serializes the private key to a PEM-encoded PKCS#8 PrivateKeyInfo structure.
|
|
///
|
|
/// The output will have a header of `-----BEGIN PRIVATE KEY-----`.
|
|
///
|
|
/// This corresponds to [`PEM_write_bio_PKCS8PrivateKey`].
|
|
///
|
|
/// [`PEM_write_bio_PKCS8PrivateKey`]: https://www.openssl.org/docs/man1.0.2/crypto/PEM_write_bio_PKCS8PrivateKey.html
|
|
private_key_to_pem_pkcs8,
|
|
/// Serializes the private key to a PEM-encoded PKCS#8 EncryptedPrivateKeyInfo structure.
|
|
///
|
|
/// The output will have a header of `-----BEGIN ENCRYPTED PRIVATE KEY-----`.
|
|
///
|
|
/// This corresponds to [`PEM_write_bio_PKCS8PrivateKey`].
|
|
///
|
|
/// [`PEM_write_bio_PKCS8PrivateKey`]: https://www.openssl.org/docs/man1.0.2/crypto/PEM_write_bio_PKCS8PrivateKey.html
|
|
private_key_to_pem_pkcs8_passphrase,
|
|
ffi::PEM_write_bio_PKCS8PrivateKey
|
|
}
|
|
|
|
to_der! {
|
|
/// Serializes the private key to a DER-encoded key type specific format.
|
|
///
|
|
/// This corresponds to [`i2d_PrivateKey`].
|
|
///
|
|
/// [`i2d_PrivateKey`]: https://www.openssl.org/docs/man1.0.2/crypto/i2d_PrivateKey.html
|
|
private_key_to_der,
|
|
ffi::i2d_PrivateKey
|
|
}
|
|
|
|
// This isn't actually PEM output, but `i2d_PKCS8PrivateKey_bio` is documented to be
|
|
// "identical to the corresponding PEM function", and it's declared in pem.h.
|
|
private_key_to_pem! {
|
|
/// Serializes the private key to a DER-encoded PKCS#8 PrivateKeyInfo structure.
|
|
///
|
|
/// This corresponds to [`i2d_PKCS8PrivateKey_bio`].
|
|
///
|
|
/// [`i2d_PKCS8PrivateKey_bio`]: https://www.openssl.org/docs/man1.1.1/man3/i2d_PKCS8PrivateKey_bio.html
|
|
private_key_to_der_pkcs8,
|
|
/// Serializes the private key to a DER-encoded PKCS#8 EncryptedPrivateKeyInfo structure.
|
|
///
|
|
/// This corresponds to [`i2d_PKCS8PrivateKey_bio`].
|
|
///
|
|
/// [`i2d_PKCS8PrivateKey_bio`]: https://www.openssl.org/docs/man1.1.1/man3/i2d_PKCS8PrivateKey_bio.html
|
|
private_key_to_der_pkcs8_passphrase,
|
|
ffi::i2d_PKCS8PrivateKey_bio
|
|
}
|
|
}
|
|
|
|
impl<T> fmt::Debug for PKey<T> {
|
|
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
|
|
let alg = match self.id() {
|
|
Id::RSA => "RSA",
|
|
Id::DSA => "DSA",
|
|
Id::DH => "DH",
|
|
Id::EC => "EC",
|
|
Id::ED25519 => "Ed25519",
|
|
Id::ED448 => "Ed448",
|
|
_ => "unknown",
|
|
};
|
|
fmt.debug_struct("PKey").field("algorithm", &alg).finish()
|
|
// TODO: Print details for each specific type of key
|
|
}
|
|
}
|
|
|
|
impl<T> Clone for PKey<T> {
|
|
fn clone(&self) -> PKey<T> {
|
|
PKeyRef::to_owned(self)
|
|
}
|
|
}
|
|
|
|
impl<T> PKey<T> {
|
|
/// Creates a new `PKey` containing an RSA key.
|
|
///
|
|
/// This corresponds to [`EVP_PKEY_assign_RSA`].
|
|
///
|
|
/// [`EVP_PKEY_assign_RSA`]: https://www.openssl.org/docs/man1.1.0/crypto/EVP_PKEY_assign_RSA.html
|
|
pub fn from_rsa(rsa: Rsa<T>) -> Result<PKey<T>, ErrorStack> {
|
|
unsafe {
|
|
let evp = cvt_p(ffi::EVP_PKEY_new())?;
|
|
let pkey = PKey::from_ptr(evp);
|
|
cvt(ffi::EVP_PKEY_assign(
|
|
pkey.0,
|
|
ffi::EVP_PKEY_RSA,
|
|
rsa.as_ptr() as *mut _,
|
|
))?;
|
|
mem::forget(rsa);
|
|
Ok(pkey)
|
|
}
|
|
}
|
|
|
|
/// Creates a new `PKey` containing an elliptic curve key.
|
|
///
|
|
/// This corresponds to [`EVP_PKEY_assign_EC_KEY`].
|
|
///
|
|
/// [`EVP_PKEY_assign_EC_KEY`]: https://www.openssl.org/docs/man1.1.0/crypto/EVP_PKEY_assign_EC_KEY.html
|
|
pub fn from_ec_key(ec_key: EcKey<T>) -> Result<PKey<T>, ErrorStack> {
|
|
unsafe {
|
|
let evp = cvt_p(ffi::EVP_PKEY_new())?;
|
|
let pkey = PKey::from_ptr(evp);
|
|
cvt(ffi::EVP_PKEY_assign(
|
|
pkey.0,
|
|
ffi::EVP_PKEY_EC,
|
|
ec_key.as_ptr() as *mut _,
|
|
))?;
|
|
mem::forget(ec_key);
|
|
Ok(pkey)
|
|
}
|
|
}
|
|
}
|
|
|
|
impl PKey<Private> {
|
|
private_key_from_pem! {
|
|
/// Deserializes a private key from a PEM-encoded key type specific format.
|
|
///
|
|
/// This corresponds to [`PEM_read_bio_PrivateKey`].
|
|
///
|
|
/// [`PEM_read_bio_PrivateKey`]: https://www.openssl.org/docs/man1.1.0/crypto/PEM_read_bio_PrivateKey.html
|
|
private_key_from_pem,
|
|
|
|
/// Deserializes a private key from a PEM-encoded encrypted key type specific format.
|
|
///
|
|
/// This corresponds to [`PEM_read_bio_PrivateKey`].
|
|
///
|
|
/// [`PEM_read_bio_PrivateKey`]: https://www.openssl.org/docs/man1.1.0/crypto/PEM_read_bio_PrivateKey.html
|
|
private_key_from_pem_passphrase,
|
|
|
|
/// Deserializes a private key from a PEM-encoded encrypted key type specific format.
|
|
///
|
|
/// The callback should fill the password into the provided buffer and return its length.
|
|
///
|
|
/// This corresponds to [`PEM_read_bio_PrivateKey`].
|
|
///
|
|
/// [`PEM_read_bio_PrivateKey`]: https://www.openssl.org/docs/man1.1.0/crypto/PEM_read_bio_PrivateKey.html
|
|
private_key_from_pem_callback,
|
|
PKey<Private>,
|
|
ffi::PEM_read_bio_PrivateKey
|
|
}
|
|
|
|
from_der! {
|
|
/// Decodes a DER-encoded private key.
|
|
///
|
|
/// This function will automatically attempt to detect the underlying key format, and
|
|
/// supports the unencrypted PKCS#8 PrivateKeyInfo structures as well as key type specific
|
|
/// formats.
|
|
///
|
|
/// This corresponds to [`d2i_AutoPrivateKey`].
|
|
///
|
|
/// [`d2i_AutoPrivateKey`]: https://www.openssl.org/docs/man1.0.2/crypto/d2i_AutoPrivateKey.html
|
|
private_key_from_der,
|
|
PKey<Private>,
|
|
ffi::d2i_AutoPrivateKey,
|
|
::libc::c_long
|
|
}
|
|
|
|
/// Deserializes a DER-formatted PKCS#8 unencrypted private key.
|
|
///
|
|
/// This method is mainly for interoperability reasons. Encrypted keyfiles should be preferred.
|
|
pub fn private_key_from_pkcs8(der: &[u8]) -> Result<PKey<Private>, ErrorStack> {
|
|
unsafe {
|
|
ffi::init();
|
|
let len = der.len().min(c_long::MAX as usize) as c_long;
|
|
let p8inf = cvt_p(ffi::d2i_PKCS8_PRIV_KEY_INFO(
|
|
ptr::null_mut(),
|
|
&mut der.as_ptr(),
|
|
len,
|
|
))?;
|
|
let res = cvt_p(ffi::EVP_PKCS82PKEY(p8inf)).map(|p| PKey::from_ptr(p));
|
|
ffi::PKCS8_PRIV_KEY_INFO_free(p8inf);
|
|
res
|
|
}
|
|
}
|
|
|
|
/// Deserializes a DER-formatted PKCS#8 private key, using a callback to retrieve the password
|
|
/// if the key is encrypted.
|
|
///
|
|
/// The callback should copy the password into the provided buffer and return the number of
|
|
/// bytes written.
|
|
pub fn private_key_from_pkcs8_callback<F>(
|
|
der: &[u8],
|
|
callback: F,
|
|
) -> Result<PKey<Private>, ErrorStack>
|
|
where
|
|
F: FnOnce(&mut [u8]) -> Result<usize, ErrorStack>,
|
|
{
|
|
unsafe {
|
|
ffi::init();
|
|
let mut cb = CallbackState::new(callback);
|
|
let bio = MemBioSlice::new(der)?;
|
|
cvt_p(ffi::d2i_PKCS8PrivateKey_bio(
|
|
bio.as_ptr(),
|
|
ptr::null_mut(),
|
|
Some(invoke_passwd_cb::<F>),
|
|
&mut cb as *mut _ as *mut _,
|
|
))
|
|
.map(|p| PKey::from_ptr(p))
|
|
}
|
|
}
|
|
|
|
/// Deserializes a DER-formatted PKCS#8 private key, using the supplied password if the key is
|
|
/// encrypted.
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Panics if `passphrase` contains an embedded null.
|
|
pub fn private_key_from_pkcs8_passphrase(
|
|
der: &[u8],
|
|
passphrase: &[u8],
|
|
) -> Result<PKey<Private>, ErrorStack> {
|
|
unsafe {
|
|
ffi::init();
|
|
let bio = MemBioSlice::new(der)?;
|
|
let passphrase = CString::new(passphrase).unwrap();
|
|
cvt_p(ffi::d2i_PKCS8PrivateKey_bio(
|
|
bio.as_ptr(),
|
|
ptr::null_mut(),
|
|
None,
|
|
passphrase.as_ptr() as *const _ as *mut _,
|
|
))
|
|
.map(|p| PKey::from_ptr(p))
|
|
}
|
|
}
|
|
}
|
|
|
|
impl PKey<Public> {
|
|
from_pem! {
|
|
/// Decodes a PEM-encoded SubjectPublicKeyInfo structure.
|
|
///
|
|
/// The input should have a header of `-----BEGIN PUBLIC KEY-----`.
|
|
///
|
|
/// This corresponds to [`PEM_read_bio_PUBKEY`].
|
|
///
|
|
/// [`PEM_read_bio_PUBKEY`]: https://www.openssl.org/docs/man1.0.2/crypto/PEM_read_bio_PUBKEY.html
|
|
public_key_from_pem,
|
|
PKey<Public>,
|
|
ffi::PEM_read_bio_PUBKEY
|
|
}
|
|
|
|
from_der! {
|
|
/// Decodes a DER-encoded SubjectPublicKeyInfo structure.
|
|
///
|
|
/// This corresponds to [`d2i_PUBKEY`].
|
|
///
|
|
/// [`d2i_PUBKEY`]: https://www.openssl.org/docs/man1.1.0/crypto/d2i_PUBKEY.html
|
|
public_key_from_der,
|
|
PKey<Public>,
|
|
ffi::d2i_PUBKEY,
|
|
::libc::c_long
|
|
}
|
|
}
|
|
|
|
use crate::ffi::EVP_PKEY_up_ref;
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use crate::ec::EcKey;
|
|
use crate::nid::Nid;
|
|
use crate::rsa::Rsa;
|
|
use crate::symm::Cipher;
|
|
|
|
use super::*;
|
|
|
|
#[test]
|
|
fn test_to_password() {
|
|
let rsa = Rsa::generate(2048).unwrap();
|
|
let pkey = PKey::from_rsa(rsa).unwrap();
|
|
let pem = pkey
|
|
.private_key_to_pem_pkcs8_passphrase(Cipher::aes_128_cbc(), b"foobar")
|
|
.unwrap();
|
|
PKey::private_key_from_pem_passphrase(&pem, b"foobar").unwrap();
|
|
assert!(PKey::private_key_from_pem_passphrase(&pem, b"fizzbuzz").is_err());
|
|
}
|
|
|
|
#[test]
|
|
fn test_unencrypted_pkcs8() {
|
|
let key = include_bytes!("../test/pkcs8-nocrypt.der");
|
|
PKey::private_key_from_pkcs8(key).unwrap();
|
|
}
|
|
|
|
#[test]
|
|
fn test_encrypted_pkcs8_passphrase() {
|
|
let key = include_bytes!("../test/pkcs8.der");
|
|
PKey::private_key_from_pkcs8_passphrase(key, b"mypass").unwrap();
|
|
}
|
|
|
|
#[test]
|
|
fn test_encrypted_pkcs8_callback() {
|
|
let mut password_queried = false;
|
|
let key = include_bytes!("../test/pkcs8.der");
|
|
PKey::private_key_from_pkcs8_callback(key, |password| {
|
|
password_queried = true;
|
|
password[..6].copy_from_slice(b"mypass");
|
|
Ok(6)
|
|
})
|
|
.unwrap();
|
|
assert!(password_queried);
|
|
}
|
|
|
|
#[test]
|
|
fn test_private_key_from_pem() {
|
|
let key = include_bytes!("../test/key.pem");
|
|
PKey::private_key_from_pem(key).unwrap();
|
|
}
|
|
|
|
#[test]
|
|
fn test_public_key_from_pem() {
|
|
let key = include_bytes!("../test/key.pem.pub");
|
|
PKey::public_key_from_pem(key).unwrap();
|
|
}
|
|
|
|
#[test]
|
|
fn test_public_key_from_der() {
|
|
let key = include_bytes!("../test/key.der.pub");
|
|
PKey::public_key_from_der(key).unwrap();
|
|
}
|
|
|
|
#[test]
|
|
fn test_private_key_from_der() {
|
|
let key = include_bytes!("../test/key.der");
|
|
PKey::private_key_from_der(key).unwrap();
|
|
}
|
|
|
|
#[test]
|
|
fn test_pem() {
|
|
let key = include_bytes!("../test/key.pem");
|
|
let key = PKey::private_key_from_pem(key).unwrap();
|
|
|
|
let priv_key = key.private_key_to_pem_pkcs8().unwrap();
|
|
let pub_key = key.public_key_to_pem().unwrap();
|
|
|
|
// As a super-simple verification, just check that the buffers contain
|
|
// the `PRIVATE KEY` or `PUBLIC KEY` strings.
|
|
assert!(priv_key.windows(11).any(|s| s == b"PRIVATE KEY"));
|
|
assert!(pub_key.windows(10).any(|s| s == b"PUBLIC KEY"));
|
|
}
|
|
|
|
#[test]
|
|
fn test_der_pkcs8() {
|
|
let key = include_bytes!("../test/key.der");
|
|
let key = PKey::private_key_from_der(key).unwrap();
|
|
|
|
let priv_key = key.private_key_to_der_pkcs8().unwrap();
|
|
|
|
// Check that this has the correct PKCS#8 version number and algorithm.
|
|
assert_eq!(hex::encode(&priv_key[4..=6]), "020100"); // Version 0
|
|
assert_eq!(hex::encode(&priv_key[9..=19]), "06092a864886f70d010101"); // Algorithm RSA/PKCS#1
|
|
}
|
|
|
|
#[test]
|
|
fn test_rsa_accessor() {
|
|
let rsa = Rsa::generate(2048).unwrap();
|
|
let pkey = PKey::from_rsa(rsa).unwrap();
|
|
pkey.rsa().unwrap();
|
|
assert_eq!(pkey.id(), Id::RSA);
|
|
assert!(pkey.dsa().is_err());
|
|
}
|
|
|
|
#[test]
|
|
fn test_ec_key_accessor() {
|
|
let ec_key = EcKey::from_curve_name(Nid::X9_62_PRIME256V1).unwrap();
|
|
let pkey = PKey::from_ec_key(ec_key).unwrap();
|
|
pkey.ec_key().unwrap();
|
|
assert_eq!(pkey.id(), Id::EC);
|
|
assert!(pkey.rsa().is_err());
|
|
}
|
|
}
|