boring2/openssl/src/pkey.rs

179 lines
6.4 KiB
Rust

use libc::{c_void, c_char, c_int};
use std::ptr;
use std::mem;
use ffi;
use {cvt, cvt_p};
use bio::{MemBio, MemBioSlice};
use dsa::Dsa;
use rsa::Rsa;
use error::ErrorStack;
use util::{CallbackState, invoke_passwd_cb};
use types::{OpenSslType, OpenSslTypeRef};
type_!(PKey, PKeyRef, ffi::EVP_PKEY, ffi::EVP_PKEY_free);
impl PKeyRef {
/// Get a reference to the interal RSA key for direct access to the key components
pub fn rsa(&self) -> Result<Rsa, ErrorStack> {
unsafe {
let rsa = try!(cvt_p(ffi::EVP_PKEY_get1_RSA(self.as_ptr())));
// this is safe as the ffi increments a reference counter to the internal key
Ok(Rsa::from_ptr(rsa))
}
}
/// Stores private key as a PEM
// FIXME: also add password and encryption
pub fn private_key_to_pem(&self) -> Result<Vec<u8>, ErrorStack> {
let mem_bio = try!(MemBio::new());
unsafe {
try!(cvt(ffi::PEM_write_bio_PrivateKey(mem_bio.as_ptr(),
self.as_ptr(),
ptr::null(),
ptr::null_mut(),
-1,
None,
ptr::null_mut())));
}
Ok(mem_bio.get_buf().to_owned())
}
/// Encode public key in PEM format
pub fn public_key_to_pem(&self) -> Result<Vec<u8>, ErrorStack> {
let mem_bio = try!(MemBio::new());
unsafe {
try!(cvt(ffi::PEM_write_bio_PUBKEY(mem_bio.as_ptr(), self.as_ptr())));
}
Ok(mem_bio.get_buf().to_owned())
}
/// Encode public key in DER format
pub fn public_key_to_der(&self) -> Result<Vec<u8>, ErrorStack> {
let mem_bio = try!(MemBio::new());
unsafe {
try!(cvt(ffi::i2d_PUBKEY_bio(mem_bio.as_ptr(), self.as_ptr())));
}
Ok(mem_bio.get_buf().to_owned())
}
pub fn public_eq(&self, other: &PKeyRef) -> bool {
unsafe { ffi::EVP_PKEY_cmp(self.as_ptr(), other.as_ptr()) == 1 }
}
}
unsafe impl Send for PKey {}
unsafe impl Sync for PKey {}
impl PKey {
/// Create a new `PKey` containing an RSA key.
pub fn from_rsa(rsa: Rsa) -> Result<PKey, ErrorStack> {
unsafe {
let evp = try!(cvt_p(ffi::EVP_PKEY_new()));
let pkey = PKey(evp);
try!(cvt(ffi::EVP_PKEY_assign(pkey.0, ffi::EVP_PKEY_RSA, rsa.as_ptr() as *mut _)));
mem::forget(rsa);
Ok(pkey)
}
}
/// Create a new `PKey` containing a DSA key.
pub fn from_dsa(dsa: Dsa) -> Result<PKey, ErrorStack> {
unsafe {
let evp = try!(cvt_p(ffi::EVP_PKEY_new()));
let pkey = PKey(evp);
try!(cvt(ffi::EVP_PKEY_assign(pkey.0, ffi::EVP_PKEY_DSA, dsa.as_ptr() as *mut _)));
mem::forget(dsa);
Ok(pkey)
}
}
/// Create a new `PKey` containing an HMAC key.
pub fn hmac(key: &[u8]) -> Result<PKey, ErrorStack> {
unsafe {
assert!(key.len() <= c_int::max_value() as usize);
let key = try!(cvt_p(ffi::EVP_PKEY_new_mac_key(ffi::EVP_PKEY_HMAC,
ptr::null_mut(),
key.as_ptr() as *const _,
key.len() as c_int)));
Ok(PKey(key))
}
}
/// Reads private key from PEM, takes ownership of handle
pub fn private_key_from_pem(buf: &[u8]) -> Result<PKey, ErrorStack> {
ffi::init();
let mem_bio = try!(MemBioSlice::new(buf));
unsafe {
let evp = try!(cvt_p(ffi::PEM_read_bio_PrivateKey(mem_bio.as_ptr(),
ptr::null_mut(),
None,
ptr::null_mut())));
Ok(PKey::from_ptr(evp))
}
}
/// Read a private key from PEM, supplying a password callback to be invoked if the private key
/// is encrypted.
///
/// The callback will be passed the password buffer and should return the number of characters
/// placed into the buffer.
pub fn private_key_from_pem_cb<F>(buf: &[u8], pass_cb: F) -> Result<PKey, ErrorStack>
where F: FnOnce(&mut [c_char]) -> usize
{
ffi::init();
let mut cb = CallbackState::new(pass_cb);
let mem_bio = try!(MemBioSlice::new(buf));
unsafe {
let evp = try!(cvt_p(ffi::PEM_read_bio_PrivateKey(mem_bio.as_ptr(),
ptr::null_mut(),
Some(invoke_passwd_cb::<F>),
&mut cb as *mut _ as *mut c_void)));
Ok(PKey::from_ptr(evp))
}
}
/// Reads public key from PEM, takes ownership of handle
pub fn public_key_from_pem(buf: &[u8]) -> Result<PKey, ErrorStack> {
ffi::init();
let mem_bio = try!(MemBioSlice::new(buf));
unsafe {
let evp = try!(cvt_p(ffi::PEM_read_bio_PUBKEY(mem_bio.as_ptr(),
ptr::null_mut(),
None,
ptr::null_mut())));
Ok(PKey::from_ptr(evp))
}
}
}
#[cfg(test)]
mod tests {
#[test]
fn test_private_key_from_pem() {
let key = include_bytes!("../test/key.pem");
super::PKey::private_key_from_pem(key).unwrap();
}
#[test]
fn test_public_key_from_pem() {
let key = include_bytes!("../test/key.pem.pub");
super::PKey::public_key_from_pem(key).unwrap();
}
#[test]
fn test_pem() {
let key = include_bytes!("../test/key.pem");
let key = super::PKey::private_key_from_pem(key).unwrap();
let priv_key = key.private_key_to_pem().unwrap();
let pub_key = key.public_key_to_pem().unwrap();
// As a super-simple verification, just check that the buffers contain
// the `PRIVATE KEY` or `PUBLIC KEY` strings.
assert!(priv_key.windows(11).any(|s| s == b"PRIVATE KEY"));
assert!(pub_key.windows(10).any(|s| s == b"PUBLIC KEY"));
}
}