boring2/boring/src/symm.rs

965 lines
32 KiB
Rust

//! High level interface to certain symmetric ciphers.
//!
//! # Examples
//!
//! Encrypt data in AES128 CBC mode
//!
//! ```
//! use boring::symm::{encrypt, Cipher};
//!
//! let cipher = Cipher::aes_128_cbc();
//! let data = b"Some Crypto Text";
//! let key = b"\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F";
//! let iv = b"\x00\x01\x02\x03\x04\x05\x06\x07\x00\x01\x02\x03\x04\x05\x06\x07";
//! let ciphertext = encrypt(
//! cipher,
//! key,
//! Some(iv),
//! data).unwrap();
//!
//! assert_eq!(
//! b"\xB4\xB9\xE7\x30\xD6\xD6\xF7\xDE\x77\x3F\x1C\xFF\xB3\x3E\x44\x5A\x91\xD7\x27\x62\x87\x4D\
//! \xFB\x3C\x5E\xC4\x59\x72\x4A\xF4\x7C\xA1",
//! &ciphertext[..]);
//! ```
//!
//! Encrypting an asymmetric key with a symmetric cipher
//!
//! ```
//! use boring::rsa::{Padding, Rsa};
//! use boring::symm::Cipher;
//!
//! // Generate keypair and encrypt private key:
//! let keypair = Rsa::generate(2048).unwrap();
//! let cipher = Cipher::aes_256_cbc();
//! let pubkey_pem = keypair.public_key_to_pem_pkcs1().unwrap();
//! let privkey_pem = keypair.private_key_to_pem_passphrase(cipher, b"Rust").unwrap();
//! // pubkey_pem and privkey_pem could be written to file here.
//!
//! // Load private and public key from string:
//! let pubkey = Rsa::public_key_from_pem_pkcs1(&pubkey_pem).unwrap();
//! let privkey = Rsa::private_key_from_pem_passphrase(&privkey_pem, b"Rust").unwrap();
//!
//! // Use the asymmetric keys to encrypt and decrypt a short message:
//! let msg = b"Foo bar";
//! let mut encrypted = vec![0; pubkey.size() as usize];
//! let mut decrypted = vec![0; privkey.size() as usize];
//! let len = pubkey.public_encrypt(msg, &mut encrypted, Padding::PKCS1).unwrap();
//! assert!(len > msg.len());
//! let len = privkey.private_decrypt(&encrypted, &mut decrypted, Padding::PKCS1).unwrap();
//! let output_string = String::from_utf8(decrypted[..len].to_vec()).unwrap();
//! assert_eq!("Foo bar", output_string);
//! println!("Decrypted: '{}'", output_string);
//! ```
use crate::ffi;
use libc::{c_int, c_uint};
use std::cmp;
use std::ptr;
use crate::error::ErrorStack;
use crate::nid::Nid;
use crate::{cvt, cvt_p};
#[derive(Copy, Clone)]
pub enum Mode {
Encrypt,
Decrypt,
}
/// Represents a particular cipher algorithm.
///
/// See OpenSSL doc at [`EVP_EncryptInit`] for more information on each algorithms.
///
/// [`EVP_EncryptInit`]: https://www.openssl.org/docs/man1.1.0/crypto/EVP_EncryptInit.html
#[derive(Copy, Clone, PartialEq, Eq)]
pub struct Cipher(*const ffi::EVP_CIPHER);
impl Cipher {
/// Looks up the cipher for a certain nid.
///
/// This corresponds to [`EVP_get_cipherbynid`]
///
/// [`EVP_get_cipherbynid`]: https://www.openssl.org/docs/man1.0.2/crypto/EVP_get_cipherbyname.html
pub fn from_nid(nid: Nid) -> Option<Cipher> {
let ptr = unsafe { ffi::EVP_get_cipherbyname(ffi::OBJ_nid2sn(nid.as_raw())) };
if ptr.is_null() {
None
} else {
Some(Cipher(ptr))
}
}
pub fn aes_128_ecb() -> Cipher {
unsafe { Cipher(ffi::EVP_aes_128_ecb()) }
}
pub fn aes_128_cbc() -> Cipher {
unsafe { Cipher(ffi::EVP_aes_128_cbc()) }
}
pub fn aes_128_ctr() -> Cipher {
unsafe { Cipher(ffi::EVP_aes_128_ctr()) }
}
pub fn aes_128_gcm() -> Cipher {
unsafe { Cipher(ffi::EVP_aes_128_gcm()) }
}
pub fn aes_128_ofb() -> Cipher {
unsafe { Cipher(ffi::EVP_aes_128_ofb()) }
}
pub fn aes_192_ecb() -> Cipher {
unsafe { Cipher(ffi::EVP_aes_192_ecb()) }
}
pub fn aes_192_cbc() -> Cipher {
unsafe { Cipher(ffi::EVP_aes_192_cbc()) }
}
pub fn aes_192_ctr() -> Cipher {
unsafe { Cipher(ffi::EVP_aes_192_ctr()) }
}
pub fn aes_192_gcm() -> Cipher {
unsafe { Cipher(ffi::EVP_aes_192_gcm()) }
}
pub fn aes_192_ofb() -> Cipher {
unsafe { Cipher(ffi::EVP_aes_192_ofb()) }
}
pub fn aes_256_ecb() -> Cipher {
unsafe { Cipher(ffi::EVP_aes_256_ecb()) }
}
pub fn aes_256_cbc() -> Cipher {
unsafe { Cipher(ffi::EVP_aes_256_cbc()) }
}
pub fn aes_256_ctr() -> Cipher {
unsafe { Cipher(ffi::EVP_aes_256_ctr()) }
}
pub fn aes_256_gcm() -> Cipher {
unsafe { Cipher(ffi::EVP_aes_256_gcm()) }
}
pub fn aes_256_ofb() -> Cipher {
unsafe { Cipher(ffi::EVP_aes_256_ofb()) }
}
pub fn des_cbc() -> Cipher {
unsafe { Cipher(ffi::EVP_des_cbc()) }
}
pub fn des_ecb() -> Cipher {
unsafe { Cipher(ffi::EVP_des_ecb()) }
}
pub fn des_ede3() -> Cipher {
unsafe { Cipher(ffi::EVP_des_ede3()) }
}
pub fn des_ede3_cbc() -> Cipher {
unsafe { Cipher(ffi::EVP_des_ede3_cbc()) }
}
pub fn rc4() -> Cipher {
unsafe { Cipher(ffi::EVP_rc4()) }
}
/// Creates a `Cipher` from a raw pointer to its OpenSSL type.
///
/// # Safety
///
/// The caller must ensure the pointer is valid for the `'static` lifetime.
pub unsafe fn from_ptr(ptr: *const ffi::EVP_CIPHER) -> Cipher {
Cipher(ptr)
}
#[allow(clippy::trivially_copy_pass_by_ref)]
pub fn as_ptr(&self) -> *const ffi::EVP_CIPHER {
self.0
}
/// Returns the length of keys used with this cipher.
#[allow(clippy::trivially_copy_pass_by_ref)]
pub fn key_len(&self) -> usize {
unsafe { EVP_CIPHER_key_length(self.0) as usize }
}
/// Returns the length of the IV used with this cipher, or `None` if the
/// cipher does not use an IV.
#[allow(clippy::trivially_copy_pass_by_ref)]
pub fn iv_len(&self) -> Option<usize> {
unsafe {
let len = EVP_CIPHER_iv_length(self.0) as usize;
if len == 0 {
None
} else {
Some(len)
}
}
}
/// Returns the block size of the cipher.
///
/// # Note
///
/// Stream ciphers such as RC4 have a block size of 1.
#[allow(clippy::trivially_copy_pass_by_ref)]
pub fn block_size(&self) -> usize {
unsafe { EVP_CIPHER_block_size(self.0) as usize }
}
}
unsafe impl Sync for Cipher {}
unsafe impl Send for Cipher {}
/// Represents a symmetric cipher context.
///
/// Padding is enabled by default.
///
/// # Examples
///
/// Encrypt some plaintext in chunks, then decrypt the ciphertext back into plaintext, in AES 128
/// CBC mode.
///
/// ```
/// use boring::symm::{Cipher, Mode, Crypter};
///
/// let plaintexts: [&[u8]; 2] = [b"Some Stream of", b" Crypto Text"];
/// let key = b"\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F";
/// let iv = b"\x00\x01\x02\x03\x04\x05\x06\x07\x00\x01\x02\x03\x04\x05\x06\x07";
/// let data_len = plaintexts.iter().fold(0, |sum, x| sum + x.len());
///
/// // Create a cipher context for encryption.
/// let mut encrypter = Crypter::new(
/// Cipher::aes_128_cbc(),
/// Mode::Encrypt,
/// key,
/// Some(iv)).unwrap();
///
/// let block_size = Cipher::aes_128_cbc().block_size();
/// let mut ciphertext = vec![0; data_len + block_size];
///
/// // Encrypt 2 chunks of plaintexts successively.
/// let mut count = encrypter.update(plaintexts[0], &mut ciphertext).unwrap();
/// count += encrypter.update(plaintexts[1], &mut ciphertext[count..]).unwrap();
/// count += encrypter.finalize(&mut ciphertext[count..]).unwrap();
/// ciphertext.truncate(count);
///
/// assert_eq!(
/// b"\x0F\x21\x83\x7E\xB2\x88\x04\xAF\xD9\xCC\xE2\x03\x49\xB4\x88\xF6\xC4\x61\x0E\x32\x1C\xF9\
/// \x0D\x66\xB1\xE6\x2C\x77\x76\x18\x8D\x99",
/// &ciphertext[..]
/// );
///
///
/// // Let's pretend we don't know the plaintext, and now decrypt the ciphertext.
/// let data_len = ciphertext.len();
/// let ciphertexts = [&ciphertext[..9], &ciphertext[9..]];
///
/// // Create a cipher context for decryption.
/// let mut decrypter = Crypter::new(
/// Cipher::aes_128_cbc(),
/// Mode::Decrypt,
/// key,
/// Some(iv)).unwrap();
/// let mut plaintext = vec![0; data_len + block_size];
///
/// // Decrypt 2 chunks of ciphertexts successively.
/// let mut count = decrypter.update(ciphertexts[0], &mut plaintext).unwrap();
/// count += decrypter.update(ciphertexts[1], &mut plaintext[count..]).unwrap();
/// count += decrypter.finalize(&mut plaintext[count..]).unwrap();
/// plaintext.truncate(count);
///
/// assert_eq!(b"Some Stream of Crypto Text", &plaintext[..]);
/// ```
pub struct Crypter {
ctx: *mut ffi::EVP_CIPHER_CTX,
block_size: usize,
}
unsafe impl Sync for Crypter {}
unsafe impl Send for Crypter {}
impl Crypter {
/// Creates a new `Crypter`. The initialisation vector, `iv`, is not necesarry for certain
/// types of `Cipher`.
///
/// # Panics
///
/// Panics if an IV is required by the cipher but not provided. Also make sure that the key
/// and IV size are appropriate for your cipher.
pub fn new(
t: Cipher,
mode: Mode,
key: &[u8],
iv: Option<&[u8]>,
) -> Result<Crypter, ErrorStack> {
ffi::init();
unsafe {
let ctx = cvt_p(ffi::EVP_CIPHER_CTX_new())?;
let crypter = Crypter {
ctx,
block_size: t.block_size(),
};
let mode = match mode {
Mode::Encrypt => 1,
Mode::Decrypt => 0,
};
cvt(ffi::EVP_CipherInit_ex(
crypter.ctx,
t.as_ptr(),
ptr::null_mut(),
ptr::null_mut(),
ptr::null_mut(),
mode,
))?;
assert!(key.len() <= c_int::MAX as usize);
cvt(ffi::EVP_CIPHER_CTX_set_key_length(
crypter.ctx,
key.len() as c_uint,
))?;
let key = key.as_ptr() as *mut _;
let iv = match (iv, t.iv_len()) {
(Some(iv), Some(len)) => {
if iv.len() != len {
assert!(iv.len() <= c_int::MAX as usize);
cvt(ffi::EVP_CIPHER_CTX_ctrl(
crypter.ctx,
ffi::EVP_CTRL_GCM_SET_IVLEN,
iv.len() as c_int,
ptr::null_mut(),
))?;
}
iv.as_ptr() as *mut _
}
(Some(_), None) | (None, None) => ptr::null_mut(),
(None, Some(_)) => panic!("an IV is required for this cipher"),
};
cvt(ffi::EVP_CipherInit_ex(
crypter.ctx,
ptr::null(),
ptr::null_mut(),
key,
iv,
mode,
))?;
Ok(crypter)
}
}
/// Enables or disables padding.
///
/// If padding is disabled, total amount of data encrypted/decrypted must
/// be a multiple of the cipher's block size.
pub fn pad(&mut self, padding: bool) {
unsafe {
ffi::EVP_CIPHER_CTX_set_padding(self.ctx, padding as c_int);
}
}
/// Sets the tag used to authenticate ciphertext in AEAD ciphers such as AES GCM.
///
/// When decrypting cipher text using an AEAD cipher, this must be called before `finalize`.
pub fn set_tag(&mut self, tag: &[u8]) -> Result<(), ErrorStack> {
unsafe {
assert!(tag.len() <= c_int::MAX as usize);
// NB: this constant is actually more general than just GCM.
cvt(ffi::EVP_CIPHER_CTX_ctrl(
self.ctx,
ffi::EVP_CTRL_GCM_SET_TAG,
tag.len() as c_int,
tag.as_ptr() as *mut _,
))
.map(|_| ())
}
}
/// Sets the length of the authentication tag to generate in AES CCM.
///
/// When encrypting with AES CCM, the tag length needs to be explicitly set in order
/// to use a value different than the default 12 bytes.
pub fn set_tag_len(&mut self, tag_len: usize) -> Result<(), ErrorStack> {
unsafe {
assert!(tag_len <= c_int::MAX as usize);
// NB: this constant is actually more general than just GCM.
cvt(ffi::EVP_CIPHER_CTX_ctrl(
self.ctx,
ffi::EVP_CTRL_GCM_SET_TAG,
tag_len as c_int,
ptr::null_mut(),
))
.map(|_| ())
}
}
/// Feeds total plaintext length to the cipher.
///
/// The total plaintext or ciphertext length MUST be passed to the cipher when it operates in
/// CCM mode.
pub fn set_data_len(&mut self, data_len: usize) -> Result<(), ErrorStack> {
unsafe {
assert!(data_len <= c_int::MAX as usize);
let mut len = 0;
cvt(ffi::EVP_CipherUpdate(
self.ctx,
ptr::null_mut(),
&mut len,
ptr::null_mut(),
data_len as c_int,
))
.map(|_| ())
}
}
/// Feeds Additional Authenticated Data (AAD) through the cipher.
///
/// This can only be used with AEAD ciphers such as AES GCM. Data fed in is not encrypted, but
/// is factored into the authentication tag. It must be called before the first call to
/// `update`.
pub fn aad_update(&mut self, input: &[u8]) -> Result<(), ErrorStack> {
unsafe {
assert!(input.len() <= c_int::MAX as usize);
let mut len = 0;
cvt(ffi::EVP_CipherUpdate(
self.ctx,
ptr::null_mut(),
&mut len,
input.as_ptr(),
input.len() as c_int,
))
.map(|_| ())
}
}
/// Feeds data from `input` through the cipher, writing encrypted/decrypted
/// bytes into `output`.
///
/// The number of bytes written to `output` is returned. Note that this may
/// not be equal to the length of `input`.
///
/// # Panics
///
/// Panics for stream ciphers if `output.len() < input.len()`.
///
/// Panics for block ciphers if `output.len() < input.len() + block_size`,
/// where `block_size` is the block size of the cipher (see `Cipher::block_size`).
///
/// Panics if `output.len() > c_int::MAX`.
pub fn update(&mut self, input: &[u8], output: &mut [u8]) -> Result<usize, ErrorStack> {
unsafe {
let block_size = if self.block_size > 1 {
self.block_size
} else {
0
};
assert!(output.len() >= input.len() + block_size);
assert!(output.len() <= c_int::MAX as usize);
let mut outl = output.len() as c_int;
let inl = input.len() as c_int;
cvt(ffi::EVP_CipherUpdate(
self.ctx,
output.as_mut_ptr(),
&mut outl,
input.as_ptr(),
inl,
))?;
Ok(outl as usize)
}
}
/// Finishes the encryption/decryption process, writing any remaining data
/// to `output`.
///
/// The number of bytes written to `output` is returned.
///
/// `update` should not be called after this method.
///
/// # Panics
///
/// Panics for block ciphers if `output.len() < block_size`,
/// where `block_size` is the block size of the cipher (see `Cipher::block_size`).
pub fn finalize(&mut self, output: &mut [u8]) -> Result<usize, ErrorStack> {
unsafe {
if self.block_size > 1 {
assert!(output.len() >= self.block_size);
}
let mut outl = cmp::min(output.len(), c_int::MAX as usize) as c_int;
cvt(ffi::EVP_CipherFinal_ex(
self.ctx,
output.as_mut_ptr(),
&mut outl,
))?;
Ok(outl as usize)
}
}
/// Retrieves the authentication tag used to authenticate ciphertext in AEAD ciphers such
/// as AES GCM.
///
/// When encrypting data with an AEAD cipher, this must be called after `finalize`.
///
/// The size of the buffer indicates the required size of the tag. While some ciphers support a
/// range of tag sizes, it is recommended to pick the maximum size. For AES GCM, this is 16
/// bytes, for example.
pub fn get_tag(&self, tag: &mut [u8]) -> Result<(), ErrorStack> {
unsafe {
assert!(tag.len() <= c_int::MAX as usize);
cvt(ffi::EVP_CIPHER_CTX_ctrl(
self.ctx,
ffi::EVP_CTRL_GCM_GET_TAG,
tag.len() as c_int,
tag.as_mut_ptr() as *mut _,
))
.map(|_| ())
}
}
}
impl Drop for Crypter {
fn drop(&mut self) {
unsafe {
ffi::EVP_CIPHER_CTX_free(self.ctx);
}
}
}
/// Encrypts data in one go, and returns the encrypted data.
///
/// Data is encrypted using the specified cipher type `t` in encrypt mode with the specified `key`
/// and initailization vector `iv`. Padding is enabled.
///
/// This is a convenient interface to `Crypter` to encrypt all data in one go. To encrypt a stream
/// of data increamentally , use `Crypter` instead.
///
/// # Examples
///
/// Encrypt data in AES128 CBC mode
///
/// ```
/// use boring::symm::{encrypt, Cipher};
///
/// let cipher = Cipher::aes_128_cbc();
/// let data = b"Some Crypto Text";
/// let key = b"\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F";
/// let iv = b"\x00\x01\x02\x03\x04\x05\x06\x07\x00\x01\x02\x03\x04\x05\x06\x07";
/// let ciphertext = encrypt(
/// cipher,
/// key,
/// Some(iv),
/// data).unwrap();
///
/// assert_eq!(
/// b"\xB4\xB9\xE7\x30\xD6\xD6\xF7\xDE\x77\x3F\x1C\xFF\xB3\x3E\x44\x5A\x91\xD7\x27\x62\x87\x4D\
/// \xFB\x3C\x5E\xC4\x59\x72\x4A\xF4\x7C\xA1",
/// &ciphertext[..]);
/// ```
pub fn encrypt(
t: Cipher,
key: &[u8],
iv: Option<&[u8]>,
data: &[u8],
) -> Result<Vec<u8>, ErrorStack> {
cipher(t, Mode::Encrypt, key, iv, data)
}
/// Decrypts data in one go, and returns the decrypted data.
///
/// Data is decrypted using the specified cipher type `t` in decrypt mode with the specified `key`
/// and initailization vector `iv`. Padding is enabled.
///
/// This is a convenient interface to `Crypter` to decrypt all data in one go. To decrypt a stream
/// of data increamentally , use `Crypter` instead.
///
/// # Examples
///
/// Decrypt data in AES128 CBC mode
///
/// ```
/// use boring::symm::{decrypt, Cipher};
///
/// let cipher = Cipher::aes_128_cbc();
/// let data = b"\xB4\xB9\xE7\x30\xD6\xD6\xF7\xDE\x77\x3F\x1C\xFF\xB3\x3E\x44\x5A\x91\xD7\x27\x62\
/// \x87\x4D\xFB\x3C\x5E\xC4\x59\x72\x4A\xF4\x7C\xA1";
/// let key = b"\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F";
/// let iv = b"\x00\x01\x02\x03\x04\x05\x06\x07\x00\x01\x02\x03\x04\x05\x06\x07";
/// let ciphertext = decrypt(
/// cipher,
/// key,
/// Some(iv),
/// data).unwrap();
///
/// assert_eq!(
/// b"Some Crypto Text",
/// &ciphertext[..]);
/// ```
pub fn decrypt(
t: Cipher,
key: &[u8],
iv: Option<&[u8]>,
data: &[u8],
) -> Result<Vec<u8>, ErrorStack> {
cipher(t, Mode::Decrypt, key, iv, data)
}
fn cipher(
t: Cipher,
mode: Mode,
key: &[u8],
iv: Option<&[u8]>,
data: &[u8],
) -> Result<Vec<u8>, ErrorStack> {
let mut c = Crypter::new(t, mode, key, iv)?;
let mut out = vec![0; data.len() + t.block_size()];
let count = c.update(data, &mut out)?;
let rest = c.finalize(&mut out[count..])?;
out.truncate(count + rest);
Ok(out)
}
/// Like `encrypt`, but for AEAD ciphers such as AES GCM.
///
/// Additional Authenticated Data can be provided in the `aad` field, and the authentication tag
/// will be copied into the `tag` field.
///
/// The size of the `tag` buffer indicates the required size of the tag. While some ciphers support
/// a range of tag sizes, it is recommended to pick the maximum size. For AES GCM, this is 16 bytes,
/// for example.
pub fn encrypt_aead(
t: Cipher,
key: &[u8],
iv: Option<&[u8]>,
aad: &[u8],
data: &[u8],
tag: &mut [u8],
) -> Result<Vec<u8>, ErrorStack> {
let mut c = Crypter::new(t, Mode::Encrypt, key, iv)?;
let mut out = vec![0; data.len() + t.block_size()];
c.aad_update(aad)?;
let count = c.update(data, &mut out)?;
let rest = c.finalize(&mut out[count..])?;
c.get_tag(tag)?;
out.truncate(count + rest);
Ok(out)
}
/// Like `decrypt`, but for AEAD ciphers such as AES GCM.
///
/// Additional Authenticated Data can be provided in the `aad` field, and the authentication tag
/// should be provided in the `tag` field.
pub fn decrypt_aead(
t: Cipher,
key: &[u8],
iv: Option<&[u8]>,
aad: &[u8],
data: &[u8],
tag: &[u8],
) -> Result<Vec<u8>, ErrorStack> {
let mut c = Crypter::new(t, Mode::Decrypt, key, iv)?;
let mut out = vec![0; data.len() + t.block_size()];
c.aad_update(aad)?;
let count = c.update(data, &mut out)?;
c.set_tag(tag)?;
let rest = c.finalize(&mut out[count..])?;
out.truncate(count + rest);
Ok(out)
}
use crate::ffi::{EVP_CIPHER_block_size, EVP_CIPHER_iv_length, EVP_CIPHER_key_length};
#[cfg(test)]
mod tests {
use super::*;
use hex::{self, FromHex};
#[test]
fn test_stream_cipher_output() {
let key = [0u8; 16];
let iv = [0u8; 16];
let mut c = super::Crypter::new(
super::Cipher::aes_128_ctr(),
super::Mode::Encrypt,
&key,
Some(&iv),
)
.unwrap();
assert_eq!(c.update(&[0u8; 15], &mut [0u8; 15]).unwrap(), 15);
assert_eq!(c.update(&[0u8; 1], &mut [0u8; 1]).unwrap(), 1);
assert_eq!(c.finalize(&mut [0u8; 0]).unwrap(), 0);
}
// Test vectors from FIPS-197:
// http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
#[test]
fn test_aes_256_ecb() {
let k0 = [
0x00u8, 0x01u8, 0x02u8, 0x03u8, 0x04u8, 0x05u8, 0x06u8, 0x07u8, 0x08u8, 0x09u8, 0x0au8,
0x0bu8, 0x0cu8, 0x0du8, 0x0eu8, 0x0fu8, 0x10u8, 0x11u8, 0x12u8, 0x13u8, 0x14u8, 0x15u8,
0x16u8, 0x17u8, 0x18u8, 0x19u8, 0x1au8, 0x1bu8, 0x1cu8, 0x1du8, 0x1eu8, 0x1fu8,
];
let p0 = [
0x00u8, 0x11u8, 0x22u8, 0x33u8, 0x44u8, 0x55u8, 0x66u8, 0x77u8, 0x88u8, 0x99u8, 0xaau8,
0xbbu8, 0xccu8, 0xddu8, 0xeeu8, 0xffu8,
];
let c0 = [
0x8eu8, 0xa2u8, 0xb7u8, 0xcau8, 0x51u8, 0x67u8, 0x45u8, 0xbfu8, 0xeau8, 0xfcu8, 0x49u8,
0x90u8, 0x4bu8, 0x49u8, 0x60u8, 0x89u8,
];
let mut c = super::Crypter::new(
super::Cipher::aes_256_ecb(),
super::Mode::Encrypt,
&k0,
None,
)
.unwrap();
c.pad(false);
let mut r0 = vec![0; c0.len() + super::Cipher::aes_256_ecb().block_size()];
let count = c.update(&p0, &mut r0).unwrap();
let rest = c.finalize(&mut r0[count..]).unwrap();
r0.truncate(count + rest);
assert_eq!(hex::encode(&r0), hex::encode(c0));
let mut c = super::Crypter::new(
super::Cipher::aes_256_ecb(),
super::Mode::Decrypt,
&k0,
None,
)
.unwrap();
c.pad(false);
let mut p1 = vec![0; r0.len() + super::Cipher::aes_256_ecb().block_size()];
let count = c.update(&r0, &mut p1).unwrap();
let rest = c.finalize(&mut p1[count..]).unwrap();
p1.truncate(count + rest);
assert_eq!(hex::encode(p1), hex::encode(p0));
}
#[test]
fn test_aes_256_cbc_decrypt() {
let iv = [
4_u8, 223_u8, 153_u8, 219_u8, 28_u8, 142_u8, 234_u8, 68_u8, 227_u8, 69_u8, 98_u8,
107_u8, 208_u8, 14_u8, 236_u8, 60_u8,
];
let data = [
143_u8, 210_u8, 75_u8, 63_u8, 214_u8, 179_u8, 155_u8, 241_u8, 242_u8, 31_u8, 154_u8,
56_u8, 198_u8, 145_u8, 192_u8, 64_u8, 2_u8, 245_u8, 167_u8, 220_u8, 55_u8, 119_u8,
233_u8, 136_u8, 139_u8, 27_u8, 71_u8, 242_u8, 119_u8, 175_u8, 65_u8, 207_u8,
];
let ciphered_data = [
0x4a_u8, 0x2e_u8, 0xe5_u8, 0x6_u8, 0xbf_u8, 0xcf_u8, 0xf2_u8, 0xd7_u8, 0xea_u8,
0x2d_u8, 0xb1_u8, 0x85_u8, 0x6c_u8, 0x93_u8, 0x65_u8, 0x6f_u8,
];
let mut cr = super::Crypter::new(
super::Cipher::aes_256_cbc(),
super::Mode::Decrypt,
&data,
Some(&iv),
)
.unwrap();
cr.pad(false);
let mut unciphered_data = vec![0; data.len() + super::Cipher::aes_256_cbc().block_size()];
let count = cr.update(&ciphered_data, &mut unciphered_data).unwrap();
let rest = cr.finalize(&mut unciphered_data[count..]).unwrap();
unciphered_data.truncate(count + rest);
let expected_unciphered_data = b"I love turtles.\x01";
assert_eq!(&unciphered_data, expected_unciphered_data);
}
fn cipher_test(ciphertype: super::Cipher, pt: &str, ct: &str, key: &str, iv: &str) {
let pt = Vec::from_hex(pt).unwrap();
let ct = Vec::from_hex(ct).unwrap();
let key = Vec::from_hex(key).unwrap();
let iv = Vec::from_hex(iv).unwrap();
let computed = super::decrypt(ciphertype, &key, Some(&iv), &ct).unwrap();
let expected = pt;
if computed != expected {
println!("Computed: {}", hex::encode(&computed));
println!("Expected: {}", hex::encode(&expected));
if computed.len() != expected.len() {
println!(
"Lengths differ: {} in computed vs {} expected",
computed.len(),
expected.len()
);
}
panic!("test failure");
}
}
#[test]
fn test_rc4() {
let pt = "0000000000000000000000000000000000000000000000000000000000000000000000000000";
let ct = "A68686B04D686AA107BD8D4CAB191A3EEC0A6294BC78B60F65C25CB47BD7BB3A48EFC4D26BE4";
let key = "97CD440324DA5FD1F7955C1C13B6B466";
let iv = "";
cipher_test(super::Cipher::rc4(), pt, ct, key, iv);
}
#[test]
fn test_aes128_ctr() {
let pt = "6BC1BEE22E409F96E93D7E117393172AAE2D8A571E03AC9C9EB76FAC45AF8E5130C81C46A35CE411\
E5FBC1191A0A52EFF69F2445DF4F9B17AD2B417BE66C3710";
let ct = "874D6191B620E3261BEF6864990DB6CE9806F66B7970FDFF8617187BB9FFFDFF5AE4DF3EDBD5D35E\
5B4F09020DB03EAB1E031DDA2FBE03D1792170A0F3009CEE";
let key = "2B7E151628AED2A6ABF7158809CF4F3C";
let iv = "F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF";
cipher_test(super::Cipher::aes_128_ctr(), pt, ct, key, iv);
}
#[test]
fn test_aes128_ofb() {
// Lifted from http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
let pt = "6bc1bee22e409f96e93d7e117393172aae2d8a571e03ac9c9eb76fac45af8e5130c81c46a35ce411e5fbc1191a0a52eff69f2445df4f9b17ad2b417be66c3710";
let ct = "3b3fd92eb72dad20333449f8e83cfb4a7789508d16918f03f53c52dac54ed8259740051e9c5fecf64344f7a82260edcc304c6528f659c77866a510d9c1d6ae5e";
let key = "2b7e151628aed2a6abf7158809cf4f3c";
let iv = "000102030405060708090a0b0c0d0e0f";
cipher_test(super::Cipher::aes_128_ofb(), pt, ct, key, iv);
}
#[test]
fn test_aes192_ctr() {
// Lifted from http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
let pt = "6bc1bee22e409f96e93d7e117393172aae2d8a571e03ac9c9eb76fac45af8e5130c81c46a35ce411e5fbc1191a0a52eff69f2445df4f9b17ad2b417be66c3710";
let ct = "1abc932417521ca24f2b0459fe7e6e0b090339ec0aa6faefd5ccc2c6f4ce8e941e36b26bd1ebc670d1bd1d665620abf74f78a7f6d29809585a97daec58c6b050";
let key = "8e73b0f7da0e6452c810f32b809079e562f8ead2522c6b7b";
let iv = "f0f1f2f3f4f5f6f7f8f9fafbfcfdfeff";
cipher_test(super::Cipher::aes_192_ctr(), pt, ct, key, iv);
}
#[test]
fn test_aes192_ofb() {
// Lifted from http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
let pt = "6bc1bee22e409f96e93d7e117393172aae2d8a571e03ac9c9eb76fac45af8e5130c81c46a35ce411e5fbc1191a0a52eff69f2445df4f9b17ad2b417be66c3710";
let ct = "cdc80d6fddf18cab34c25909c99a4174fcc28b8d4c63837c09e81700c11004018d9a9aeac0f6596f559c6d4daf59a5f26d9f200857ca6c3e9cac524bd9acc92a";
let key = "8e73b0f7da0e6452c810f32b809079e562f8ead2522c6b7b";
let iv = "000102030405060708090a0b0c0d0e0f";
cipher_test(super::Cipher::aes_192_ofb(), pt, ct, key, iv);
}
#[test]
fn test_aes256_ofb() {
// Lifted from http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
let pt = "6bc1bee22e409f96e93d7e117393172aae2d8a571e03ac9c9eb76fac45af8e5130c81c46a35ce411e5fbc1191a0a52eff69f2445df4f9b17ad2b417be66c3710";
let ct = "dc7e84bfda79164b7ecd8486985d38604febdc6740d20b3ac88f6ad82a4fb08d71ab47a086e86eedf39d1c5bba97c4080126141d67f37be8538f5a8be740e484";
let key = "603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4";
let iv = "000102030405060708090a0b0c0d0e0f";
cipher_test(super::Cipher::aes_256_ofb(), pt, ct, key, iv);
}
#[test]
fn test_des_cbc() {
let pt = "54686973206973206120746573742e";
let ct = "6f2867cfefda048a4046ef7e556c7132";
let key = "7cb66337f3d3c0fe";
let iv = "0001020304050607";
cipher_test(super::Cipher::des_cbc(), pt, ct, key, iv);
}
#[test]
fn test_des_ecb() {
let pt = "54686973206973206120746573742e";
let ct = "0050ab8aecec758843fe157b4dde938c";
let key = "7cb66337f3d3c0fe";
let iv = "0001020304050607";
cipher_test(super::Cipher::des_ecb(), pt, ct, key, iv);
}
#[test]
fn test_des_ede3() {
let pt = "9994f4c69d40ae4f34ff403b5cf39d4c8207ea5d3e19a5fd";
let ct = "9e5c4297d60582f81071ac8ab7d0698d4c79de8b94c519858207ea5d3e19a5fd";
let key = "010203040506070801020304050607080102030405060708";
let iv = "5cc118306dc702e4";
cipher_test(super::Cipher::des_ede3(), pt, ct, key, iv);
}
#[test]
fn test_des_ede3_cbc() {
let pt = "54686973206973206120746573742e";
let ct = "6f2867cfefda048a4046ef7e556c7132";
let key = "7cb66337f3d3c0fe7cb66337f3d3c0fe7cb66337f3d3c0fe";
let iv = "0001020304050607";
cipher_test(super::Cipher::des_ede3_cbc(), pt, ct, key, iv);
}
#[test]
fn test_aes128_gcm() {
let key = "0e00c76561d2bd9b40c3c15427e2b08f";
let iv = "492cadaccd3ca3fbc9cf9f06eb3325c4e159850b0dbe98199b89b7af528806610b6f63998e1eae80c348e7\
4cbb921d8326631631fc6a5d304f39166daf7ea15fa1977f101819adb510b50fe9932e12c5a85aa3fd1e73\
d8d760af218be829903a77c63359d75edd91b4f6ed5465a72662f5055999e059e7654a8edc921aa0d496";
let pt = "fef03c2d7fb15bf0d2df18007d99f967c878ad59359034f7bb2c19af120685d78e32f6b8b83b032019956c\
a9c0195721476b85";
let aad = "d8f1163d8c840292a2b2dacf4ac7c36aff8733f18fabb4fa5594544125e03d1e6e5d6d0fd61656c8d8f327\
c92839ae5539bb469c9257f109ebff85aad7bd220fdaa95c022dbd0c7bb2d878ad504122c943045d3c5eba\
8f1f56c0";
let ct = "4f6cf471be7cbd2575cd5a1747aea8fe9dea83e51936beac3e68f66206922060c697ffa7af80ad6bb68f2c\
f4fc97416ee52abe";
let tag = "e20b6655";
// this tag is smaller than you'd normally want, but I pulled this test from the part of
// the NIST test vectors that cover 4 byte tags.
let mut actual_tag = [0; 4];
let out = encrypt_aead(
Cipher::aes_128_gcm(),
&Vec::from_hex(key).unwrap(),
Some(&Vec::from_hex(iv).unwrap()),
&Vec::from_hex(aad).unwrap(),
&Vec::from_hex(pt).unwrap(),
&mut actual_tag,
)
.unwrap();
assert_eq!(ct, hex::encode(out));
assert_eq!(tag, hex::encode(actual_tag));
let out = decrypt_aead(
Cipher::aes_128_gcm(),
&Vec::from_hex(key).unwrap(),
Some(&Vec::from_hex(iv).unwrap()),
&Vec::from_hex(aad).unwrap(),
&Vec::from_hex(ct).unwrap(),
&Vec::from_hex(tag).unwrap(),
)
.unwrap();
assert_eq!(pt, hex::encode(out));
}
}