boring2/openssl/src/bn/mod.rs

1034 lines
28 KiB
Rust

use libc::{c_int, c_ulong, c_void};
use std::ffi::{CStr, CString};
use std::cmp::Ordering;
use std::{fmt, ptr, mem};
use std::marker::PhantomData;
use std::ops::{Add, Div, Mul, Neg, Rem, Shl, Shr, Sub, Deref, DerefMut};
use ffi;
use error::ErrorStack;
/// Specifies the desired properties of a randomly generated `BigNum`.
#[derive(Copy, Clone)]
#[repr(C)]
pub enum RNGProperty {
/// The most significant bit of the number is allowed to be 0.
MsbMaybeZero = -1,
/// The MSB should be set to 1.
MsbOne = 0,
/// The two most significant bits of the number will be set to 1, so that the product of two
/// such random numbers will always have `2 * bits` length.
TwoMsbOne = 1,
}
macro_rules! with_ctx(
($name:ident, $action:block) => ({
let $name = ffi::BN_CTX_new();
if ($name).is_null() {
Err(ErrorStack::get())
} else {
let r = $action;
ffi::BN_CTX_free($name);
r
}
});
);
macro_rules! with_bn(
($name:ident, $action:block) => ({
let tmp = BigNum::new();
match tmp {
Ok($name) => {
if $action {
Ok($name)
} else {
Err(ErrorStack::get())
}
},
Err(err) => Err(err),
}
});
);
macro_rules! with_bn_in_ctx(
($name:ident, $ctx_name:ident, $action:block) => ({
let tmp = BigNum::new();
match tmp {
Ok($name) => {
let $ctx_name = ffi::BN_CTX_new();
if ($ctx_name).is_null() {
Err(ErrorStack::get())
} else {
let r =
if $action {
Ok($name)
} else {
Err(ErrorStack::get())
};
ffi::BN_CTX_free($ctx_name);
r
}
},
Err(err) => Err(err),
}
});
);
/// A borrowed, signed, arbitrary-precision integer.
#[derive(Copy, Clone)]
pub struct BigNumRef<'a>(*mut ffi::BIGNUM, PhantomData<&'a ()>);
impl<'a> BigNumRef<'a> {
pub unsafe fn from_handle(handle: *mut ffi::BIGNUM) -> BigNumRef<'a> {
BigNumRef(handle, PhantomData)
}
/// Returns the square of `self`.
///
/// ```
/// # use openssl::bn::BigNum;
/// let ref n = BigNum::new_from(10).unwrap();
/// let squared = BigNum::new_from(100).unwrap();
///
/// assert_eq!(n.checked_sqr().unwrap(), squared);
/// assert_eq!(n * n, squared);
/// ```
pub fn checked_sqr(&self) -> Result<BigNum, ErrorStack> {
unsafe {
with_bn_in_ctx!(r, ctx, {
ffi::BN_sqr(r.raw(), self.raw(), ctx) == 1
})
}
}
/// Returns the unsigned remainder of the division `self / n`.
pub fn checked_nnmod(&self, n: &BigNumRef) -> Result<BigNum, ErrorStack> {
unsafe {
with_bn_in_ctx!(r, ctx, {
ffi::BN_nnmod(r.raw(), self.raw(), n.raw(), ctx) == 1
})
}
}
/// Equivalent to `(self + a) mod n`.
///
/// ```
/// # use openssl::bn::BigNum;
/// let ref s = BigNum::new_from(10).unwrap();
/// let ref a = BigNum::new_from(20).unwrap();
/// let ref n = BigNum::new_from(29).unwrap();
/// let result = BigNum::new_from(1).unwrap();
///
/// assert_eq!(s.checked_mod_add(a, n).unwrap(), result);
/// ```
pub fn checked_mod_add(&self, a: &BigNumRef, n: &BigNumRef) -> Result<BigNum, ErrorStack> {
unsafe {
with_bn_in_ctx!(r, ctx, {
ffi::BN_mod_add(r.raw(), self.raw(), a.raw(), n.raw(), ctx) == 1
})
}
}
/// Equivalent to `(self - a) mod n`.
pub fn checked_mod_sub(&self, a: &BigNumRef, n: &BigNumRef) -> Result<BigNum, ErrorStack> {
unsafe {
with_bn_in_ctx!(r, ctx, {
ffi::BN_mod_sub(r.raw(), self.raw(), a.raw(), n.raw(), ctx) == 1
})
}
}
/// Equivalent to `(self * a) mod n`.
pub fn checked_mod_mul(&self, a: &BigNumRef, n: &BigNumRef) -> Result<BigNum, ErrorStack> {
unsafe {
with_bn_in_ctx!(r, ctx, {
ffi::BN_mod_mul(r.raw(), self.raw(), a.raw(), n.raw(), ctx) == 1
})
}
}
/// Equivalent to `self² mod n`.
pub fn checked_mod_sqr(&self, n: &BigNumRef) -> Result<BigNum, ErrorStack> {
unsafe {
with_bn_in_ctx!(r, ctx, {
ffi::BN_mod_sqr(r.raw(), self.raw(), n.raw(), ctx) == 1
})
}
}
/// Raises `self` to the `p`th power.
pub fn checked_exp(&self, p: &BigNumRef) -> Result<BigNum, ErrorStack> {
unsafe {
with_bn_in_ctx!(r, ctx, {
ffi::BN_exp(r.raw(), self.raw(), p.raw(), ctx) == 1
})
}
}
/// Equivalent to `self.checked_exp(p) mod n`.
pub fn checked_mod_exp(&self, p: &BigNumRef, n: &BigNumRef) -> Result<BigNum, ErrorStack> {
unsafe {
with_bn_in_ctx!(r, ctx, {
ffi::BN_mod_exp(r.raw(), self.raw(), p.raw(), n.raw(), ctx) == 1
})
}
}
/// Calculates the modular multiplicative inverse of `self` modulo `n`, that is, an integer `r`
/// such that `(self * r) % n == 1`.
pub fn checked_mod_inv(&self, n: &BigNumRef) -> Result<BigNum, ErrorStack> {
unsafe {
with_bn_in_ctx!(r, ctx, {
!ffi::BN_mod_inverse(r.raw(), self.raw(), n.raw(), ctx).is_null()
})
}
}
/// Add an `unsigned long` to `self`. This is more efficient than adding a `BigNum`.
pub fn add_word(&mut self, w: c_ulong) -> Result<(), ErrorStack> {
unsafe {
if ffi::BN_add_word(self.raw(), w) == 1 {
Ok(())
} else {
Err(ErrorStack::get())
}
}
}
pub fn sub_word(&mut self, w: c_ulong) -> Result<(), ErrorStack> {
unsafe {
if ffi::BN_sub_word(self.raw(), w) == 1 {
Ok(())
} else {
Err(ErrorStack::get())
}
}
}
pub fn mul_word(&mut self, w: c_ulong) -> Result<(), ErrorStack> {
unsafe {
if ffi::BN_mul_word(self.raw(), w) == 1 {
Ok(())
} else {
Err(ErrorStack::get())
}
}
}
pub fn div_word(&mut self, w: c_ulong) -> Result<c_ulong, ErrorStack> {
unsafe {
let result = ffi::BN_div_word(self.raw(), w);
if result != !0 as c_ulong {
Ok(result)
} else {
Err(ErrorStack::get())
}
}
}
pub fn mod_word(&self, w: c_ulong) -> Result<c_ulong, ErrorStack> {
unsafe {
let result = ffi::BN_mod_word(self.raw(), w);
if result != !0 as c_ulong {
Ok(result)
} else {
Err(ErrorStack::get())
}
}
}
/// Computes the greatest common denominator of `self` and `a`.
pub fn checked_gcd(&self, a: &BigNumRef) -> Result<BigNum, ErrorStack> {
unsafe {
with_bn_in_ctx!(r, ctx, {
ffi::BN_gcd(r.raw(), self.raw(), a.raw(), ctx) == 1
})
}
}
/// Checks whether `self` is prime.
///
/// Performs a Miller-Rabin probabilistic primality test with `checks` iterations.
///
/// # Return Value
///
/// Returns `true` if `self` is prime with an error probability of less than `0.25 ^ checks`.
pub fn is_prime(&self, checks: i32) -> Result<bool, ErrorStack> {
unsafe {
with_ctx!(ctx, {
Ok(ffi::BN_is_prime_ex(self.raw(), checks as c_int, ctx, ptr::null()) == 1)
})
}
}
/// Checks whether `self` is prime with optional trial division.
///
/// If `do_trial_division` is `true`, first performs trial division by a number of small primes.
/// Then, like `is_prime`, performs a Miller-Rabin probabilistic primality test with `checks`
/// iterations.
///
/// # Return Value
///
/// Returns `true` if `self` is prime with an error probability of less than `0.25 ^ checks`.
pub fn is_prime_fast(&self, checks: i32, do_trial_division: bool) -> Result<bool, ErrorStack> {
unsafe {
with_ctx!(ctx, {
Ok(ffi::BN_is_prime_fasttest_ex(self.raw(),
checks as c_int,
ctx,
do_trial_division as c_int,
ptr::null()) == 1)
})
}
}
/// Generates a cryptographically strong pseudo-random `BigNum` `r` in the range
/// `0 <= r < self`.
pub fn checked_rand_in_range(&self) -> Result<BigNum, ErrorStack> {
unsafe {
with_bn_in_ctx!(r, ctx, {
ffi::BN_rand_range(r.raw(), self.raw()) == 1
})
}
}
/// The cryptographically weak counterpart to `checked_rand_in_range`.
pub fn checked_pseudo_rand_in_range(&self) -> Result<BigNum, ErrorStack> {
unsafe {
with_bn_in_ctx!(r, ctx, {
ffi::BN_pseudo_rand_range(r.raw(), self.raw()) == 1
})
}
}
/// Sets bit `n`. Equivalent to `self |= (1 << n)`.
///
/// When setting a bit outside of `self`, it is expanded.
pub fn set_bit(&mut self, n: i32) -> Result<(), ErrorStack> {
unsafe {
if ffi::BN_set_bit(self.raw(), n as c_int) == 1 {
Ok(())
} else {
Err(ErrorStack::get())
}
}
}
/// Clears bit `n`, setting it to 0. Equivalent to `self &= ~(1 << n)`.
///
/// When clearing a bit outside of `self`, an error is returned.
pub fn clear_bit(&mut self, n: i32) -> Result<(), ErrorStack> {
unsafe {
if ffi::BN_clear_bit(self.raw(), n as c_int) == 1 {
Ok(())
} else {
Err(ErrorStack::get())
}
}
}
/// Returns `true` if the `n`th bit of `self` is set to 1, `false` otherwise.
pub fn is_bit_set(&self, n: i32) -> bool {
unsafe { ffi::BN_is_bit_set(self.raw(), n as c_int) == 1 }
}
/// Truncates `self` to the lowest `n` bits.
///
/// An error occurs if `self` is already shorter than `n` bits.
pub fn mask_bits(&mut self, n: i32) -> Result<(), ErrorStack> {
unsafe {
if ffi::BN_mask_bits(self.raw(), n as c_int) == 1 {
Ok(())
} else {
Err(ErrorStack::get())
}
}
}
/// Returns `self`, shifted left by 1 bit. `self` may be negative.
///
/// ```
/// # use openssl::bn::BigNum;
/// let ref s = BigNum::new_from(0b0100).unwrap();
/// let result = BigNum::new_from(0b1000).unwrap();
///
/// assert_eq!(s.checked_shl1().unwrap(), result);
/// ```
///
/// ```
/// # use openssl::bn::BigNum;
/// let ref s = -BigNum::new_from(8).unwrap();
/// let result = -BigNum::new_from(16).unwrap();
///
/// // (-8) << 1 == -16
/// assert_eq!(s.checked_shl1().unwrap(), result);
/// ```
pub fn checked_shl1(&self) -> Result<BigNum, ErrorStack> {
unsafe {
with_bn!(r, {
ffi::BN_lshift1(r.raw(), self.raw()) == 1
})
}
}
/// Returns `self`, shifted right by 1 bit. `self` may be negative.
pub fn checked_shr1(&self) -> Result<BigNum, ErrorStack> {
unsafe {
with_bn!(r, {
ffi::BN_rshift1(r.raw(), self.raw()) == 1
})
}
}
pub fn checked_add(&self, a: &BigNumRef) -> Result<BigNum, ErrorStack> {
unsafe {
with_bn!(r, {
ffi::BN_add(r.raw(), self.raw(), a.raw()) == 1
})
}
}
pub fn checked_sub(&self, a: &BigNumRef) -> Result<BigNum, ErrorStack> {
unsafe {
with_bn!(r, {
ffi::BN_sub(r.raw(), self.raw(), a.raw()) == 1
})
}
}
pub fn checked_mul(&self, a: &BigNumRef) -> Result<BigNum, ErrorStack> {
unsafe {
with_bn_in_ctx!(r, ctx, {
ffi::BN_mul(r.raw(), self.raw(), a.raw(), ctx) == 1
})
}
}
pub fn checked_div(&self, a: &BigNumRef) -> Result<BigNum, ErrorStack> {
unsafe {
with_bn_in_ctx!(r, ctx, {
ffi::BN_div(r.raw(), ptr::null_mut(), self.raw(), a.raw(), ctx) == 1
})
}
}
pub fn checked_mod(&self, a: &BigNumRef) -> Result<BigNum, ErrorStack> {
unsafe {
with_bn_in_ctx!(r, ctx, {
ffi::BN_div(ptr::null_mut(), r.raw(), self.raw(), a.raw(), ctx) == 1
})
}
}
pub fn checked_shl(&self, a: &i32) -> Result<BigNum, ErrorStack> {
unsafe {
with_bn!(r, {
ffi::BN_lshift(r.raw(), self.raw(), *a as c_int) == 1
})
}
}
pub fn checked_shr(&self, a: &i32) -> Result<BigNum, ErrorStack> {
unsafe {
with_bn!(r, {
ffi::BN_rshift(r.raw(), self.raw(), *a as c_int) == 1
})
}
}
pub fn to_owned(&self) -> Result<BigNum, ErrorStack> {
unsafe {
let r = try_ssl_null!(ffi::BN_dup(self.raw()));
Ok(BigNum::from_handle(r))
}
}
/// Inverts the sign of `self`.
///
/// ```
/// # use openssl::bn::BigNum;
/// let mut s = BigNum::new_from(8).unwrap();
///
/// s.negate();
/// assert_eq!(s, -BigNum::new_from(8).unwrap());
/// s.negate();
/// assert_eq!(s, BigNum::new_from(8).unwrap());
/// ```
pub fn negate(&mut self) {
unsafe { ffi::BN_set_negative(self.raw(), !self.is_negative() as c_int) }
}
/// Compare the absolute values of `self` and `oth`.
///
/// ```
/// # use openssl::bn::BigNum;
/// # use std::cmp::Ordering;
/// let s = -BigNum::new_from(8).unwrap();
/// let o = BigNum::new_from(8).unwrap();
///
/// assert_eq!(s.abs_cmp(&o), Ordering::Equal);
/// ```
pub fn abs_cmp(&self, oth: &BigNumRef) -> Ordering {
unsafe {
let res = ffi::BN_ucmp(self.raw(), oth.raw()) as i32;
if res < 0 {
Ordering::Less
} else if res > 0 {
Ordering::Greater
} else {
Ordering::Equal
}
}
}
pub fn is_negative(&self) -> bool {
unsafe { (*self.raw()).neg == 1 }
}
/// Returns the number of significant bits in `self`.
pub fn num_bits(&self) -> i32 {
unsafe { ffi::BN_num_bits(self.raw()) as i32 }
}
/// Returns the size of `self` in bytes.
pub fn num_bytes(&self) -> i32 {
(self.num_bits() + 7) / 8
}
pub fn raw(&self) -> *mut ffi::BIGNUM {
self.0
}
pub fn raw_ptr(&self) -> *const *mut ffi::BIGNUM {
&self.0
}
/// Returns a big-endian byte vector representation of the absolute value of `self`.
///
/// `self` can be recreated by using `new_from_slice`.
///
/// ```
/// # use openssl::bn::BigNum;
/// let s = -BigNum::new_from(4543).unwrap();
/// let r = BigNum::new_from(4543).unwrap();
///
/// let s_vec = s.to_vec();
/// assert_eq!(BigNum::new_from_slice(&s_vec).unwrap(), r);
/// ```
pub fn to_vec(&self) -> Vec<u8> {
let size = self.num_bytes() as usize;
let mut v = Vec::with_capacity(size);
unsafe {
ffi::BN_bn2bin(self.raw(), v.as_mut_ptr());
v.set_len(size);
}
v
}
/// Returns a decimal string representation of `self`.
///
/// ```
/// # use openssl::bn::BigNum;
/// let s = -BigNum::new_from(12345).unwrap();
///
/// assert_eq!(s.to_dec_str(), "-12345");
/// ```
pub fn to_dec_str(&self) -> String {
unsafe {
let buf = ffi::BN_bn2dec(self.raw());
assert!(!buf.is_null());
let str = String::from_utf8(CStr::from_ptr(buf as *const _).to_bytes().to_vec())
.unwrap();
ffi::CRYPTO_free(buf as *mut c_void);
str
}
}
/// Returns a hexadecimal string representation of `self`.
///
/// ```
/// # use openssl::bn::BigNum;
/// let s = -BigNum::new_from(0x99ff).unwrap();
///
/// assert_eq!(s.to_hex_str(), "-99FF");
/// ```
pub fn to_hex_str(&self) -> String {
unsafe {
let buf = ffi::BN_bn2hex(self.raw());
assert!(!buf.is_null());
let str = String::from_utf8(CStr::from_ptr(buf as *const _).to_bytes().to_vec())
.unwrap();
ffi::CRYPTO_free(buf as *mut c_void);
str
}
}
}
/// An owned, signed, arbitrary-precision integer.
///
/// `BigNum` provides wrappers around OpenSSL's checked arithmetic functions.
/// Additionally, it implements the standard operators (`std::ops`), which
/// perform unchecked arithmetic, unwrapping the returned `Result` of the
/// checked operations.
pub struct BigNum(BigNumRef<'static>);
impl BigNum {
/// Creates a new `BigNum` with the value 0.
pub fn new() -> Result<BigNum, ErrorStack> {
unsafe {
ffi::init();
let v = try_ssl_null!(ffi::BN_new());
Ok(BigNum::from_handle(v))
}
}
/// Creates a new `BigNum` with the given value.
pub fn new_from(n: c_ulong) -> Result<BigNum, ErrorStack> {
BigNum::new().and_then(|v| unsafe {
try_ssl!(ffi::BN_set_word(v.raw(), n));
Ok(v)
})
}
/// Creates a `BigNum` from a decimal string.
pub fn from_dec_str(s: &str) -> Result<BigNum, ErrorStack> {
BigNum::new().and_then(|v| unsafe {
let c_str = CString::new(s.as_bytes()).unwrap();
try_ssl!(ffi::BN_dec2bn(v.raw_ptr(), c_str.as_ptr() as *const _));
Ok(v)
})
}
/// Creates a `BigNum` from a hexadecimal string.
pub fn from_hex_str(s: &str) -> Result<BigNum, ErrorStack> {
BigNum::new().and_then(|v| unsafe {
let c_str = CString::new(s.as_bytes()).unwrap();
try_ssl!(ffi::BN_hex2bn(v.raw_ptr(), c_str.as_ptr() as *const _));
Ok(v)
})
}
pub unsafe fn from_handle(handle: *mut ffi::BIGNUM) -> BigNum {
BigNum(BigNumRef::from_handle(handle))
}
/// Creates a new `BigNum` from an unsigned, big-endian encoded number of arbitrary length.
///
/// ```
/// # use openssl::bn::BigNum;
/// let bignum = BigNum::new_from_slice(&[0x12, 0x00, 0x34]).unwrap();
///
/// assert_eq!(bignum, BigNum::new_from(0x120034).unwrap());
/// ```
pub fn new_from_slice(n: &[u8]) -> Result<BigNum, ErrorStack> {
BigNum::new().and_then(|v| unsafe {
try_ssl_null!(ffi::BN_bin2bn(n.as_ptr(), n.len() as c_int, v.raw()));
Ok(v)
})
}
/// Generates a prime number.
///
/// # Parameters
///
/// * `bits`: The length of the prime in bits (lower bound).
/// * `safe`: If true, returns a "safe" prime `p` so that `(p-1)/2` is also prime.
/// * `add`/`rem`: If `add` is set to `Some(add)`, `p % add == rem` will hold, where `p` is the
/// generated prime and `rem` is `1` if not specified (`None`).
pub fn checked_generate_prime(bits: i32,
safe: bool,
add: Option<&BigNum>,
rem: Option<&BigNum>)
-> Result<BigNum, ErrorStack> {
unsafe {
with_bn_in_ctx!(r, ctx, {
let add_arg = add.map(|a| a.raw()).unwrap_or(ptr::null_mut());
let rem_arg = rem.map(|r| r.raw()).unwrap_or(ptr::null_mut());
ffi::BN_generate_prime_ex(r.raw(),
bits as c_int,
safe as c_int,
add_arg,
rem_arg,
ptr::null()) == 1
})
}
}
/// Generates a cryptographically strong pseudo-random `BigNum`.
///
/// # Parameters
///
/// * `bits`: Length of the number in bits.
/// * `prop`: The desired properties of the number.
/// * `odd`: If `true`, the generated number will be odd.
pub fn checked_new_random(bits: i32, prop: RNGProperty, odd: bool) -> Result<BigNum, ErrorStack> {
unsafe {
with_bn_in_ctx!(r, ctx, {
ffi::BN_rand(r.raw(), bits as c_int, prop as c_int, odd as c_int) == 1
})
}
}
/// The cryptographically weak counterpart to `checked_new_random`.
pub fn checked_new_pseudo_random(bits: i32,
prop: RNGProperty,
odd: bool)
-> Result<BigNum, ErrorStack> {
unsafe {
with_bn_in_ctx!(r, ctx, {
ffi::BN_pseudo_rand(r.raw(), bits as c_int, prop as c_int, odd as c_int) == 1
})
}
}
pub fn into_raw(self) -> *mut ffi::BIGNUM {
let ptr = self.raw();
mem::forget(self);
ptr
}
}
impl Drop for BigNum {
fn drop(&mut self) {
unsafe { ffi::BN_clear_free(self.raw()); }
}
}
impl Deref for BigNum {
type Target = BigNumRef<'static>;
fn deref(&self) -> &BigNumRef<'static> {
&self.0
}
}
impl DerefMut for BigNum {
fn deref_mut(&mut self) -> &mut BigNumRef<'static> {
&mut self.0
}
}
impl AsRef<BigNumRef<'static>> for BigNum {
fn as_ref(&self) -> &BigNumRef<'static> {
self.deref()
}
}
impl<'a> fmt::Debug for BigNumRef<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.to_dec_str())
}
}
impl fmt::Debug for BigNum {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.to_dec_str())
}
}
impl<'a> fmt::Display for BigNumRef<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.to_dec_str())
}
}
impl fmt::Display for BigNum {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.to_dec_str())
}
}
impl<'a, 'b> PartialEq<BigNumRef<'b>> for BigNumRef<'a> {
fn eq(&self, oth: &BigNumRef) -> bool {
unsafe { ffi::BN_cmp(self.raw(), oth.raw()) == 0 }
}
}
impl<'a> PartialEq<BigNum> for BigNumRef<'a> {
fn eq(&self, oth: &BigNum) -> bool {
self.eq(oth.deref())
}
}
impl<'a> Eq for BigNumRef<'a> {}
impl PartialEq for BigNum {
fn eq(&self, oth: &BigNum) -> bool {
self.deref().eq(oth)
}
}
impl<'a> PartialEq<BigNumRef<'a>> for BigNum {
fn eq(&self, oth: &BigNumRef) -> bool {
self.deref().eq(oth)
}
}
impl Eq for BigNum {}
impl<'a, 'b> PartialOrd<BigNumRef<'b>> for BigNumRef<'a> {
fn partial_cmp(&self, oth: &BigNumRef) -> Option<Ordering> {
Some(self.cmp(oth))
}
}
impl<'a> PartialOrd<BigNum> for BigNumRef<'a> {
fn partial_cmp(&self, oth: &BigNum) -> Option<Ordering> {
Some(self.cmp(oth.deref()))
}
}
impl<'a> Ord for BigNumRef<'a> {
fn cmp(&self, oth: &BigNumRef) -> Ordering {
unsafe { ffi::BN_cmp(self.raw(), oth.raw()).cmp(&0) }
}
}
impl PartialOrd for BigNum {
fn partial_cmp(&self, oth: &BigNum) -> Option<Ordering> {
self.deref().partial_cmp(oth.deref())
}
}
impl<'a> PartialOrd<BigNumRef<'a>> for BigNum {
fn partial_cmp(&self, oth: &BigNumRef) -> Option<Ordering> {
self.deref().partial_cmp(oth)
}
}
impl Ord for BigNum {
fn cmp(&self, oth: &BigNum) -> Ordering {
self.deref().cmp(oth.deref())
}
}
impl<'a, 'b> Add<&'b BigNumRef<'b>> for &'a BigNumRef<'a> {
type Output = BigNum;
fn add(self, oth: &BigNumRef) -> BigNum {
self.checked_add(oth).unwrap()
}
}
impl<'a, 'b> Sub<&'b BigNumRef<'b>> for &'a BigNumRef<'a> {
type Output = BigNum;
fn sub(self, oth: &BigNumRef) -> BigNum {
self.checked_sub(oth).unwrap()
}
}
impl<'a, 'b> Sub<&'b BigNum> for &'a BigNumRef<'a> {
type Output = BigNum;
fn sub(self, oth: &BigNum) -> BigNum {
self.checked_sub(oth).unwrap()
}
}
impl<'a, 'b> Sub<&'b BigNum> for &'a BigNum {
type Output = BigNum;
fn sub(self, oth: &BigNum) -> BigNum {
self.checked_sub(oth).unwrap()
}
}
impl<'a, 'b> Sub<&'b BigNumRef<'b>> for &'a BigNum {
type Output = BigNum;
fn sub(self, oth: &BigNumRef) -> BigNum {
self.checked_sub(oth).unwrap()
}
}
impl<'a, 'b> Mul<&'b BigNumRef<'b>> for &'a BigNumRef<'a> {
type Output = BigNum;
fn mul(self, oth: &BigNumRef) -> BigNum {
self.checked_mul(oth).unwrap()
}
}
impl<'a, 'b> Mul<&'b BigNum> for &'a BigNumRef<'a> {
type Output = BigNum;
fn mul(self, oth: &BigNum) -> BigNum {
self.checked_mul(oth).unwrap()
}
}
impl<'a, 'b> Mul<&'b BigNum> for &'a BigNum {
type Output = BigNum;
fn mul(self, oth: &BigNum) -> BigNum {
self.checked_mul(oth).unwrap()
}
}
impl<'a, 'b> Mul<&'b BigNumRef<'b>> for &'a BigNum {
type Output = BigNum;
fn mul(self, oth: &BigNumRef) -> BigNum {
self.checked_mul(oth).unwrap()
}
}
impl<'a, 'b> Div<&'b BigNumRef<'b>> for &'a BigNumRef<'a> {
type Output = BigNum;
fn div(self, oth: &'b BigNumRef<'b>) -> BigNum {
self.checked_div(oth).unwrap()
}
}
impl<'a, 'b> Div<&'b BigNum> for &'a BigNumRef<'a> {
type Output = BigNum;
fn div(self, oth: &'b BigNum) -> BigNum {
self.checked_div(oth).unwrap()
}
}
impl<'a, 'b> Div<&'b BigNum> for &'a BigNum {
type Output = BigNum;
fn div(self, oth: &'b BigNum) -> BigNum {
self.checked_div(oth).unwrap()
}
}
impl<'a, 'b> Div<&'b BigNumRef<'b>> for &'a BigNum {
type Output = BigNum;
fn div(self, oth: &'b BigNumRef<'b>) -> BigNum {
self.checked_div(oth).unwrap()
}
}
impl<'a, 'b> Rem<&'b BigNumRef<'b>> for &'a BigNumRef<'a> {
type Output = BigNum;
fn rem(self, oth: &'b BigNumRef<'b>) -> BigNum {
self.checked_mod(oth).unwrap()
}
}
impl<'a, 'b> Rem<&'b BigNum> for &'a BigNumRef<'a> {
type Output = BigNum;
fn rem(self, oth: &'b BigNum) -> BigNum {
self.checked_mod(oth).unwrap()
}
}
impl<'a, 'b> Rem<&'b BigNumRef<'b>> for &'a BigNum {
type Output = BigNum;
fn rem(self, oth: &'b BigNumRef<'b>) -> BigNum {
self.checked_mod(oth).unwrap()
}
}
impl<'a, 'b> Rem<&'b BigNum> for &'a BigNum {
type Output = BigNum;
fn rem(self, oth: &'b BigNum) -> BigNum {
self.checked_mod(oth).unwrap()
}
}
impl<'a> Shl<i32> for &'a BigNumRef<'a> {
type Output = BigNum;
fn shl(self, n: i32) -> BigNum {
self.checked_shl(&n).unwrap()
}
}
impl<'a> Shl<i32> for &'a BigNum {
type Output = BigNum;
fn shl(self, n: i32) -> BigNum {
self.checked_shl(&n).unwrap()
}
}
impl<'a> Shr<i32> for &'a BigNumRef<'a> {
type Output = BigNum;
fn shr(self, n: i32) -> BigNum {
self.checked_shr(&n).unwrap()
}
}
impl<'a> Shr<i32> for &'a BigNum {
type Output = BigNum;
fn shr(self, n: i32) -> BigNum {
self.checked_shr(&n).unwrap()
}
}
impl<'a> Neg for &'a BigNumRef<'a> {
type Output = BigNum;
fn neg(self) -> BigNum {
let mut n = self.to_owned().unwrap();
n.negate();
n
}
}
impl<'a> Neg for &'a BigNum {
type Output = BigNum;
fn neg(self) -> BigNum {
let mut n = self.deref().to_owned().unwrap();
n.negate();
n
}
}
impl Neg for BigNum {
type Output = BigNum;
fn neg(mut self) -> BigNum {
self.negate();
self
}
}
#[cfg(test)]
mod tests {
use bn::BigNum;
#[test]
fn test_to_from_slice() {
let v0 = BigNum::new_from(10203004).unwrap();
let vec = v0.to_vec();
let v1 = BigNum::new_from_slice(&vec).unwrap();
assert!(v0 == v1);
}
#[test]
fn test_negation() {
let a = BigNum::new_from(909829283).unwrap();
assert!(!a.is_negative());
assert!((-a).is_negative());
}
#[test]
fn test_prime_numbers() {
let a = BigNum::new_from(19029017).unwrap();
let p = BigNum::checked_generate_prime(128, true, None, Some(&a)).unwrap();
assert!(p.is_prime(100).unwrap());
assert!(p.is_prime_fast(100, true).unwrap());
}
}