boring2/openssl/src/x509/mod.rs

944 lines
28 KiB
Rust

use libc::{c_char, c_int, c_long, c_ulong, c_void};
use std::borrow::Borrow;
use std::cmp;
use std::collections::HashMap;
use std::error::Error;
use std::ffi::{CStr, CString};
use std::fmt;
use std::marker::PhantomData;
use std::mem;
use std::ops::Deref;
use std::ptr;
use std::slice;
use std::str;
use {cvt, cvt_p};
use asn1::Asn1Time;
use asn1::Asn1TimeRef;
use bio::{MemBio, MemBioSlice};
use crypto::CryptoString;
use hash::MessageDigest;
use pkey::PKey;
use rand::rand_bytes;
use error::ErrorStack;
use ffi;
use nid::Nid;
use opaque::Opaque;
#[cfg(ossl10x)]
use ffi::{
X509_set_notBefore,
X509_set_notAfter,
ASN1_STRING_data,
};
#[cfg(ossl110)]
use ffi::{
X509_set1_notBefore as X509_set_notBefore,
X509_set1_notAfter as X509_set_notAfter,
ASN1_STRING_get0_data as ASN1_STRING_data,
};
#[cfg(any(all(feature = "v102", ossl102), all(feature = "v110", ossl110)))]
pub use verify;
use x509::extension::{ExtensionType, Extension};
pub mod extension;
#[cfg(test)]
mod tests;
#[derive(Copy, Clone)]
#[repr(i32)]
pub enum X509FileType {
PEM = ffi::X509_FILETYPE_PEM,
ASN1 = ffi::X509_FILETYPE_ASN1,
Default = ffi::X509_FILETYPE_DEFAULT,
}
pub struct X509StoreContextRef(Opaque);
impl X509StoreContextRef {
pub unsafe fn from_ptr<'a>(ctx: *mut ffi::X509_STORE_CTX) -> &'a X509StoreContextRef {
&*(ctx as *mut _)
}
pub fn as_ptr(&self) -> *mut ffi::X509_STORE_CTX {
self as *const _ as *mut _
}
pub fn error(&self) -> Option<X509VerifyError> {
unsafe {
X509VerifyError::from_raw(ffi::X509_STORE_CTX_get_error(self.as_ptr()) as c_long)
}
}
pub fn current_cert(&self) -> Option<&X509Ref> {
unsafe {
let ptr = ffi::X509_STORE_CTX_get_current_cert(self.as_ptr());
if ptr.is_null() {
None
} else {
Some(X509Ref::from_ptr(ptr))
}
}
}
pub fn error_depth(&self) -> u32 {
unsafe { ffi::X509_STORE_CTX_get_error_depth(self.as_ptr()) as u32 }
}
}
#[allow(non_snake_case)]
/// Generator of private key/certificate pairs
///
/// # Example
///
/// ```
/// use openssl::hash::MessageDigest;
/// use openssl::pkey::PKey;
/// use openssl::rsa::Rsa;
/// use openssl::x509::X509Generator;
/// use openssl::x509::extension::{Extension, KeyUsageOption};
///
/// let rsa = Rsa::generate(2048).unwrap();
/// let pkey = PKey::from_rsa(rsa).unwrap();
///
/// let gen = X509Generator::new()
/// .set_valid_period(365*2)
/// .add_name("CN".to_owned(), "SuperMegaCorp Inc.".to_owned())
/// .set_sign_hash(MessageDigest::sha256())
/// .add_extension(Extension::KeyUsage(vec![KeyUsageOption::DigitalSignature]));
///
/// let cert = gen.sign(&pkey).unwrap();
/// let cert_pem = cert.to_pem().unwrap();
/// let pkey_pem = pkey.private_key_to_pem().unwrap();
/// ```
pub struct X509Generator {
days: u32,
names: Vec<(String, String)>,
extensions: Extensions,
hash_type: MessageDigest,
}
impl X509Generator {
/// Creates a new generator with the following defaults:
///
/// validity period: 365 days
///
/// CN: "rust-openssl"
///
/// hash: SHA1
pub fn new() -> X509Generator {
X509Generator {
days: 365,
names: vec![],
extensions: Extensions::new(),
hash_type: MessageDigest::sha1(),
}
}
/// Sets certificate validity period in days since today
pub fn set_valid_period(mut self, days: u32) -> X509Generator {
self.days = days;
self
}
/// Add attribute to the name of the certificate
///
/// ```
/// # let generator = openssl::x509::X509Generator::new();
/// generator.add_name("CN".to_string(),"example.com".to_string());
/// ```
pub fn add_name(mut self, attr_type: String, attr_value: String) -> X509Generator {
self.names.push((attr_type, attr_value));
self
}
/// Add multiple attributes to the name of the certificate
///
/// ```
/// # let generator = openssl::x509::X509Generator::new();
/// generator.add_names(vec![("CN".to_string(),"example.com".to_string())]);
/// ```
pub fn add_names<I>(mut self, attrs: I) -> X509Generator
where I: IntoIterator<Item = (String, String)>
{
self.names.extend(attrs);
self
}
/// Add an extension to a certificate
///
/// If the extension already exists, it will be replaced.
///
/// ```
/// use openssl::x509::extension::Extension::*;
/// use openssl::x509::extension::KeyUsageOption::*;
///
/// # let generator = openssl::x509::X509Generator::new();
/// generator.add_extension(KeyUsage(vec![DigitalSignature, KeyEncipherment]));
/// ```
pub fn add_extension(mut self, ext: extension::Extension) -> X509Generator {
self.extensions.add(ext);
self
}
/// Add multiple extensions to a certificate
///
/// If any of the extensions already exist, they will be replaced.
///
/// ```
/// use openssl::x509::extension::Extension::*;
/// use openssl::x509::extension::KeyUsageOption::*;
///
/// # let generator = openssl::x509::X509Generator::new();
/// generator.add_extensions(vec![KeyUsage(vec![DigitalSignature, KeyEncipherment])]);
/// ```
pub fn add_extensions<I>(mut self, exts: I) -> X509Generator
where I: IntoIterator<Item = extension::Extension>
{
for ext in exts {
self.extensions.add(ext);
}
self
}
pub fn set_sign_hash(mut self, hash_type: MessageDigest) -> X509Generator {
self.hash_type = hash_type;
self
}
fn add_extension_internal(x509: *mut ffi::X509,
exttype: &extension::ExtensionType,
value: &str)
-> Result<(), ErrorStack> {
unsafe {
let mut ctx: ffi::X509V3_CTX = mem::zeroed();
ffi::X509V3_set_ctx(&mut ctx, x509, x509, ptr::null_mut(), ptr::null_mut(), 0);
let value = CString::new(value.as_bytes()).unwrap();
let ext = match exttype.get_nid() {
Some(nid) => {
try!(cvt_p(ffi::X509V3_EXT_conf_nid(ptr::null_mut(),
mem::transmute(&ctx),
nid.as_raw(),
value.as_ptr() as *mut c_char)))
}
None => {
let name = CString::new(exttype.get_name().unwrap().as_bytes()).unwrap();
try!(cvt_p(ffi::X509V3_EXT_conf(ptr::null_mut(),
mem::transmute(&ctx),
name.as_ptr() as *mut c_char,
value.as_ptr() as *mut c_char)))
}
};
if ffi::X509_add_ext(x509, ext, -1) != 1 {
ffi::X509_EXTENSION_free(ext);
Err(ErrorStack::get())
} else {
Ok(())
}
}
}
fn add_name_internal(name: *mut ffi::X509_NAME,
key: &str,
value: &str)
-> Result<(), ErrorStack> {
let value_len = value.len() as c_int;
unsafe {
let key = CString::new(key.as_bytes()).unwrap();
let value = CString::new(value.as_bytes()).unwrap();
cvt(ffi::X509_NAME_add_entry_by_txt(name,
key.as_ptr() as *const _,
ffi::MBSTRING_UTF8,
value.as_ptr() as *const _,
value_len,
-1,
0))
.map(|_| ())
}
}
fn random_serial() -> Result<c_long, ErrorStack> {
let len = mem::size_of::<c_long>();
let mut bytes = vec![0; len];
try!(rand_bytes(&mut bytes));
let mut res = 0;
for b in bytes.iter() {
res = res << 8;
res |= (*b as c_long) & 0xff;
}
// While OpenSSL is actually OK to have negative serials
// other libraries (for example, Go crypto) can drop
// such certificates as invalid, so we clear the high bit
Ok(((res as c_ulong) >> 1) as c_long)
}
/// Sets the certificate public-key, then self-sign and return it
pub fn sign(&self, p_key: &PKey) -> Result<X509, ErrorStack> {
ffi::init();
unsafe {
let x509 = X509::from_ptr(try!(cvt_p(ffi::X509_new())));
try!(cvt(ffi::X509_set_version(x509.as_ptr(), 2)));
try!(cvt(ffi::ASN1_INTEGER_set(ffi::X509_get_serialNumber(x509.as_ptr()),
try!(X509Generator::random_serial()))));
let not_before = try!(Asn1Time::days_from_now(0));
let not_after = try!(Asn1Time::days_from_now(self.days));
try!(cvt(X509_set_notBefore(x509.as_ptr(), not_before.as_ptr() as *const _)));
// If prev line succeded - ownership should go to cert
mem::forget(not_before);
try!(cvt(X509_set_notAfter(x509.as_ptr(), not_after.as_ptr() as *const _)));
// If prev line succeded - ownership should go to cert
mem::forget(not_after);
try!(cvt(ffi::X509_set_pubkey(x509.as_ptr(), p_key.as_ptr())));
let name = try!(cvt_p(ffi::X509_get_subject_name(x509.as_ptr())));
let default = [("CN", "rust-openssl")];
let default_iter = &mut default.iter().map(|&(k, v)| (k, v));
let arg_iter = &mut self.names.iter().map(|&(ref k, ref v)| (&k[..], &v[..]));
let iter: &mut Iterator<Item = (&str, &str)> = if self.names.len() == 0 {
default_iter
} else {
arg_iter
};
for (key, val) in iter {
try!(X509Generator::add_name_internal(name, &key, &val));
}
try!(cvt(ffi::X509_set_issuer_name(x509.as_ptr(), name)));
for (exttype, ext) in self.extensions.iter() {
try!(X509Generator::add_extension_internal(x509.as_ptr(),
&exttype,
&ext.to_string()));
}
let hash_fn = self.hash_type.as_ptr();
try!(cvt(ffi::X509_sign(x509.as_ptr(), p_key.as_ptr(), hash_fn)));
Ok(x509)
}
}
/// Obtain a certificate signing request (CSR)
pub fn request(&self, p_key: &PKey) -> Result<X509Req, ErrorStack> {
let cert = match self.sign(p_key) {
Ok(c) => c,
Err(x) => return Err(x),
};
unsafe {
let req = try!(cvt_p(ffi::X509_to_X509_REQ(cert.as_ptr(),
ptr::null_mut(),
ptr::null())));
let req = X509Req::from_ptr(req);
let exts = compat::X509_get0_extensions(cert.as_ptr());
if exts != ptr::null_mut() {
try!(cvt(ffi::X509_REQ_add_extensions(req.as_ptr(), exts as *mut _)));
}
let hash_fn = self.hash_type.as_ptr();
try!(cvt(ffi::X509_REQ_sign(req.as_ptr(), p_key.as_ptr(), hash_fn)));
Ok(req)
}
}
}
/// A borrowed public key certificate.
pub struct X509Ref(Opaque);
impl X509Ref {
/// Creates a new `X509Ref` wrapping the provided handle.
pub unsafe fn from_ptr<'a>(x509: *mut ffi::X509) -> &'a X509Ref {
&*(x509 as *mut _)
}
pub fn as_ptr(&self) -> *mut ffi::X509 {
self as *const _ as *mut _
}
pub fn subject_name(&self) -> &X509NameRef {
unsafe {
let name = ffi::X509_get_subject_name(self.as_ptr());
X509NameRef::from_ptr(name)
}
}
/// Returns this certificate's SAN entries, if they exist.
pub fn subject_alt_names(&self) -> Option<GeneralNames> {
unsafe {
let stack = ffi::X509_get_ext_d2i(self.as_ptr(),
ffi::NID_subject_alt_name,
ptr::null_mut(),
ptr::null_mut());
if stack.is_null() {
return None;
}
Some(GeneralNames {
stack: stack as *mut _,
})
}
}
pub fn public_key(&self) -> Result<PKey, ErrorStack> {
unsafe {
let pkey = try!(cvt_p(ffi::X509_get_pubkey(self.as_ptr())));
Ok(PKey::from_ptr(pkey))
}
}
/// Returns certificate fingerprint calculated using provided hash
pub fn fingerprint(&self, hash_type: MessageDigest) -> Result<Vec<u8>, ErrorStack> {
unsafe {
let evp = hash_type.as_ptr();
let mut len = ffi::EVP_MAX_MD_SIZE;
let mut buf = vec![0u8; len as usize];
try!(cvt(ffi::X509_digest(self.as_ptr(), evp, buf.as_mut_ptr() as *mut _, &mut len)));
buf.truncate(len as usize);
Ok(buf)
}
}
/// Returns certificate Not After validity period.
pub fn not_after<'a>(&'a self) -> &'a Asn1TimeRef {
unsafe {
let date = compat::X509_get_notAfter(self.as_ptr());
assert!(!date.is_null());
Asn1TimeRef::from_ptr(date)
}
}
/// Returns certificate Not Before validity period.
pub fn not_before<'a>(&'a self) -> &'a Asn1TimeRef {
unsafe {
let date = compat::X509_get_notBefore(self.as_ptr());
assert!(!date.is_null());
Asn1TimeRef::from_ptr(date)
}
}
/// Writes certificate as PEM
pub fn to_pem(&self) -> Result<Vec<u8>, ErrorStack> {
let mem_bio = try!(MemBio::new());
unsafe {
try!(cvt(ffi::PEM_write_bio_X509(mem_bio.as_ptr(), self.as_ptr())));
}
Ok(mem_bio.get_buf().to_owned())
}
/// Returns a DER serialized form of the certificate
pub fn to_der(&self) -> Result<Vec<u8>, ErrorStack> {
let mem_bio = try!(MemBio::new());
unsafe {
ffi::i2d_X509_bio(mem_bio.as_ptr(), self.as_ptr());
}
Ok(mem_bio.get_buf().to_owned())
}
}
impl ToOwned for X509Ref {
type Owned = X509;
fn to_owned(&self) -> X509 {
unsafe {
compat::X509_up_ref(self.as_ptr());
X509::from_ptr(self.as_ptr())
}
}
}
/// An owned public key certificate.
pub struct X509(*mut ffi::X509);
impl X509 {
/// Returns a new `X509`, taking ownership of the handle.
pub unsafe fn from_ptr(x509: *mut ffi::X509) -> X509 {
X509(x509)
}
/// Reads a certificate from DER.
pub fn from_der(buf: &[u8]) -> Result<X509, ErrorStack> {
unsafe {
let mut ptr = buf.as_ptr();
let len = cmp::min(buf.len(), c_long::max_value() as usize) as c_long;
let x509 = try!(cvt_p(ffi::d2i_X509(ptr::null_mut(), &mut ptr, len)));
Ok(X509::from_ptr(x509))
}
}
/// Reads a certificate from PEM.
pub fn from_pem(buf: &[u8]) -> Result<X509, ErrorStack> {
let mem_bio = try!(MemBioSlice::new(buf));
unsafe {
let handle = try!(cvt_p(ffi::PEM_read_bio_X509(mem_bio.as_ptr(),
ptr::null_mut(),
None,
ptr::null_mut())));
Ok(X509::from_ptr(handle))
}
}
}
impl Deref for X509 {
type Target = X509Ref;
fn deref(&self) -> &X509Ref {
unsafe {
X509Ref::from_ptr(self.0)
}
}
}
impl Clone for X509 {
fn clone(&self) -> X509 {
self.to_owned()
}
}
impl Drop for X509 {
fn drop(&mut self) {
unsafe { ffi::X509_free(self.as_ptr()) };
}
}
impl AsRef<X509Ref> for X509 {
fn as_ref(&self) -> &X509Ref {
&*self
}
}
impl Borrow<X509Ref> for X509 {
fn borrow(&self) -> &X509Ref {
&*self
}
}
pub struct X509NameRef(Opaque);
impl X509NameRef {
pub unsafe fn from_ptr<'a>(ptr: *mut ffi::X509_NAME) -> &'a X509NameRef {
&*(ptr as *mut _)
}
pub fn as_ptr(&self) -> *mut ffi::X509_NAME {
self as *const _ as *mut _
}
pub fn text_by_nid(&self, nid: Nid) -> Option<CryptoString> {
unsafe {
let loc = ffi::X509_NAME_get_index_by_NID(self.as_ptr(), nid.as_raw(), -1);
if loc == -1 {
return None;
}
let ne = ffi::X509_NAME_get_entry(self.as_ptr(), loc);
if ne.is_null() {
return None;
}
let asn1_str = ffi::X509_NAME_ENTRY_get_data(ne);
if asn1_str.is_null() {
return None;
}
let mut str_from_asn1: *mut u8 = ptr::null_mut();
let len = ffi::ASN1_STRING_to_UTF8(&mut str_from_asn1, asn1_str);
if len < 0 {
return None;
}
assert!(!str_from_asn1.is_null());
Some(CryptoString::from_raw_parts(str_from_asn1, len as usize))
}
}
}
/// A certificate signing request
pub struct X509Req(*mut ffi::X509_REQ);
impl X509Req {
pub unsafe fn from_ptr(handle: *mut ffi::X509_REQ) -> X509Req {
X509Req(handle)
}
pub fn as_ptr(&self) -> *mut ffi::X509_REQ {
self.0
}
/// Reads CSR from PEM
pub fn from_pem(buf: &[u8]) -> Result<X509Req, ErrorStack> {
let mem_bio = try!(MemBioSlice::new(buf));
unsafe {
let handle = try!(cvt_p(ffi::PEM_read_bio_X509_REQ(mem_bio.as_ptr(),
ptr::null_mut(),
None,
ptr::null_mut())));
Ok(X509Req::from_ptr(handle))
}
}
/// Writes CSR as PEM
pub fn to_pem(&self) -> Result<Vec<u8>, ErrorStack> {
let mem_bio = try!(MemBio::new());
if unsafe { ffi::PEM_write_bio_X509_REQ(mem_bio.as_ptr(), self.0) } != 1 {
return Err(ErrorStack::get());
}
Ok(mem_bio.get_buf().to_owned())
}
/// Returns a DER serialized form of the CSR
pub fn to_der(&self) -> Result<Vec<u8>, ErrorStack> {
let mem_bio = try!(MemBio::new());
unsafe {
ffi::i2d_X509_REQ_bio(mem_bio.as_ptr(), self.0);
}
Ok(mem_bio.get_buf().to_owned())
}
}
impl Drop for X509Req {
fn drop(&mut self) {
unsafe { ffi::X509_REQ_free(self.0) };
}
}
/// A collection of X.509 extensions.
///
/// Upholds the invariant that a certificate MUST NOT include more than one
/// instance of a particular extension, according to RFC 3280 §4.2. Also
/// ensures that extensions are added to the certificate during signing
/// in the order they were inserted, which is required for certain
/// extensions like SubjectKeyIdentifier and AuthorityKeyIdentifier.
struct Extensions {
/// The extensions contained in the collection.
extensions: Vec<Extension>,
/// A map of used to keep track of added extensions and their indexes in `self.extensions`.
indexes: HashMap<ExtensionType, usize>,
}
impl Extensions {
/// Creates a new `Extensions`.
pub fn new() -> Extensions {
Extensions {
extensions: vec![],
indexes: HashMap::new(),
}
}
/// Adds a new `Extension`, replacing any existing one of the same
/// `ExtensionType`.
pub fn add(&mut self, ext: Extension) {
let ext_type = ext.get_type();
if let Some(index) = self.indexes.get(&ext_type) {
self.extensions[*index] = ext;
return;
}
self.extensions.push(ext);
self.indexes.insert(ext_type, self.extensions.len() - 1);
}
/// Returns an `ExtensionsIter` for the collection.
pub fn iter(&self) -> ExtensionsIter {
ExtensionsIter {
current: 0,
extensions: &self.extensions,
}
}
}
/// An iterator that iterates over `(ExtensionType, Extension)` for each
/// extension in the collection.
struct ExtensionsIter<'a> {
current: usize,
extensions: &'a Vec<Extension>,
}
impl<'a> Iterator for ExtensionsIter<'a> {
type Item = (ExtensionType, &'a Extension);
fn next(&mut self) -> Option<Self::Item> {
if self.current < self.extensions.len() {
let ext = &self.extensions[self.current];
self.current += 1;
Some((ext.get_type(), ext))
} else {
None
}
}
}
pub struct X509VerifyError(c_long);
impl fmt::Debug for X509VerifyError {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
fmt.debug_struct("X509VerifyError")
.field("code", &self.0)
.field("error", &self.error_string())
.finish()
}
}
impl fmt::Display for X509VerifyError {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
fmt.write_str(self.error_string())
}
}
impl Error for X509VerifyError {
fn description(&self) -> &str {
"an X509 validation error"
}
}
impl X509VerifyError {
/// Creates an `X509VerifyError` from a raw error number.
///
/// `None` will be returned if `err` is `X509_V_OK`.
///
/// # Safety
///
/// Some methods on `X509VerifyError` are not thread safe if the error
/// number is invalid.
pub unsafe fn from_raw(err: c_long) -> Option<X509VerifyError> {
if err == ffi::X509_V_OK as c_long {
None
} else {
Some(X509VerifyError(err))
}
}
pub fn as_raw(&self) -> c_long {
self.0
}
pub fn error_string(&self) -> &'static str {
ffi::init();
unsafe {
let s = ffi::X509_verify_cert_error_string(self.0);
str::from_utf8(CStr::from_ptr(s).to_bytes()).unwrap()
}
}
}
/// A collection of OpenSSL `GENERAL_NAME`s.
pub struct GeneralNames {
stack: *mut ffi::stack_st_GENERAL_NAME,
}
impl Drop for GeneralNames {
#[cfg(ossl10x)]
fn drop(&mut self) {
unsafe {
// This transmute is dubious but it's what openssl itself does...
let free: unsafe extern fn(*mut ffi::GENERAL_NAME) = ffi::GENERAL_NAME_free;
let free: unsafe extern fn(*mut c_void) = mem::transmute(free);
ffi::sk_pop_free(&mut (*self.stack).stack, Some(free));
}
}
#[cfg(ossl110)]
fn drop(&mut self) {
unsafe {
// This transmute is dubious but it's what openssl itself does...
let free: unsafe extern fn(*mut ffi::GENERAL_NAME) = ffi::GENERAL_NAME_free;
let free: unsafe extern fn(*mut c_void) = mem::transmute(free);
ffi::OPENSSL_sk_pop_free(self.stack as *mut _, Some(free));
}
}
}
impl GeneralNames {
/// Returns the number of `GeneralName`s in this structure.
pub fn len(&self) -> usize {
self._len()
}
#[cfg(ossl10x)]
fn _len(&self) -> usize {
unsafe { (*self.stack).stack.num as usize }
}
#[cfg(ossl110)]
fn _len(&self) -> usize {
unsafe { ffi::OPENSSL_sk_num(self.stack as *const _) as usize }
}
/// Returns the specified `GeneralName`.
///
/// # Panics
///
/// Panics if `idx` is not less than `len()`.
pub fn get<'a>(&'a self, idx: usize) -> GeneralName<'a> {
unsafe {
assert!(idx < self.len());
GeneralName {
name: self._get(idx),
m: PhantomData,
}
}
}
#[cfg(ossl10x)]
unsafe fn _get(&self, idx: usize) -> *const ffi::GENERAL_NAME {
*(*self.stack).stack.data.offset(idx as isize) as *const ffi::GENERAL_NAME
}
#[cfg(ossl110)]
unsafe fn _get(&self, idx: usize) -> *const ffi::GENERAL_NAME {
ffi::OPENSSL_sk_value(self.stack as *const _, idx as c_int) as *mut _
}
/// Returns an iterator over the `GeneralName`s in this structure.
pub fn iter(&self) -> GeneralNamesIter {
GeneralNamesIter {
names: self,
idx: 0,
}
}
}
impl<'a> IntoIterator for &'a GeneralNames {
type Item = GeneralName<'a>;
type IntoIter = GeneralNamesIter<'a>;
fn into_iter(self) -> GeneralNamesIter<'a> {
self.iter()
}
}
/// An iterator over OpenSSL `GENERAL_NAME`s.
pub struct GeneralNamesIter<'a> {
names: &'a GeneralNames,
idx: usize,
}
impl<'a> Iterator for GeneralNamesIter<'a> {
type Item = GeneralName<'a>;
fn next(&mut self) -> Option<Self::Item> {
if self.idx < self.names.len() {
let name = self.names.get(self.idx);
self.idx += 1;
Some(name)
} else {
None
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
let size = self.names.len() - self.idx;
(size, Some(size))
}
}
impl<'a> ExactSizeIterator for GeneralNamesIter<'a> {}
/// An OpenSSL `GENERAL_NAME`.
pub struct GeneralName<'a> {
name: *const ffi::GENERAL_NAME,
m: PhantomData<&'a ()>,
}
impl<'a> GeneralName<'a> {
/// Returns the contents of this `GeneralName` if it is a `dNSName`.
pub fn dnsname(&self) -> Option<&str> {
unsafe {
if (*self.name).type_ != ffi::GEN_DNS {
return None;
}
let ptr = ASN1_STRING_data((*self.name).d as *mut _);
let len = ffi::ASN1_STRING_length((*self.name).d as *mut _);
let slice = slice::from_raw_parts(ptr as *const u8, len as usize);
// dNSNames are stated to be ASCII (specifically IA5). Hopefully
// OpenSSL checks that when loading a certificate but if not we'll
// use this instead of from_utf8_unchecked just in case.
str::from_utf8(slice).ok()
}
}
/// Returns the contents of this `GeneralName` if it is an `iPAddress`.
pub fn ipaddress(&self) -> Option<&[u8]> {
unsafe {
if (*self.name).type_ != ffi::GEN_IPADD {
return None;
}
let ptr = ASN1_STRING_data((*self.name).d as *mut _);
let len = ffi::ASN1_STRING_length((*self.name).d as *mut _);
Some(slice::from_raw_parts(ptr as *const u8, len as usize))
}
}
}
#[test]
fn test_negative_serial() {
// I guess that's enough to get a random negative number
for _ in 0..1000 {
assert!(X509Generator::random_serial().unwrap() > 0,
"All serials should be positive");
}
}
#[cfg(ossl110)]
mod compat {
pub use ffi::X509_getm_notAfter as X509_get_notAfter;
pub use ffi::X509_getm_notBefore as X509_get_notBefore;
pub use ffi::X509_up_ref;
pub use ffi::X509_get0_extensions;
}
#[cfg(ossl10x)]
#[allow(bad_style)]
mod compat {
use libc::c_int;
use ffi;
pub unsafe fn X509_get_notAfter(x: *mut ffi::X509) -> *mut ffi::ASN1_TIME {
(*(*(*x).cert_info).validity).notAfter
}
pub unsafe fn X509_get_notBefore(x: *mut ffi::X509) -> *mut ffi::ASN1_TIME {
(*(*(*x).cert_info).validity).notBefore
}
pub unsafe fn X509_up_ref(x: *mut ffi::X509) {
ffi::CRYPTO_add_lock(&mut (*x).references,
1,
ffi::CRYPTO_LOCK_X509,
"mod.rs\0".as_ptr() as *const _,
line!() as c_int);
}
pub unsafe fn X509_get0_extensions(cert: *const ffi::X509)
-> *const ffi::stack_st_X509_EXTENSION {
let info = (*cert).cert_info;
if info.is_null() {
0 as *mut _
} else {
(*info).extensions
}
}
}