boring2/boring/src/pkey.rs

657 lines
20 KiB
Rust

//! Public/private key processing.
//!
//! Asymmetric public key algorithms solve the problem of establishing and sharing
//! secret keys to securely send and receive messages.
//! This system uses a pair of keys: a public key, which can be freely
//! distributed, and a private key, which is kept to oneself. An entity may
//! encrypt information using a user's public key. The encrypted information can
//! only be deciphered using that user's private key.
//!
//! This module offers support for five popular algorithms:
//!
//! * RSA
//!
//! * DSA
//!
//! * Diffie-Hellman
//!
//! * Elliptic Curves
//!
//! * HMAC
//!
//! These algorithms rely on hard mathematical problems - namely integer factorization,
//! discrete logarithms, and elliptic curve relationships - that currently do not
//! yield efficient solutions. This property ensures the security of these
//! cryptographic algorithms.
//!
//! # Example
//!
//! Generate a 2048-bit RSA public/private key pair and print the public key.
//!
//! ```rust
//! use boring2::rsa::Rsa;
//! use boring2::pkey::PKey;
//! use std::str;
//!
//! let rsa = Rsa::generate(2048).unwrap();
//! let pkey = PKey::from_rsa(rsa).unwrap();
//!
//! let pub_key: Vec<u8> = pkey.public_key_to_pem().unwrap();
//! println!("{:?}", str::from_utf8(pub_key.as_slice()).unwrap());
//! ```
use crate::ffi;
use foreign_types::{ForeignType, ForeignTypeRef};
use libc::{c_int, c_long};
use openssl_macros::corresponds;
use std::ffi::CString;
use std::fmt;
use std::mem;
use std::ptr;
use crate::bio::MemBioSlice;
use crate::dh::Dh;
use crate::dsa::Dsa;
use crate::ec::EcKey;
use crate::error::ErrorStack;
use crate::rsa::Rsa;
use crate::util::{invoke_passwd_cb, CallbackState};
use crate::{cvt, cvt_0i, cvt_p};
/// A tag type indicating that a key only has parameters.
pub enum Params {}
/// A tag type indicating that a key only has public components.
pub enum Public {}
/// A tag type indicating that a key has private components.
pub enum Private {}
/// An identifier of a kind of key.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub struct Id(c_int);
impl Id {
pub const RSA: Id = Id(ffi::EVP_PKEY_RSA);
pub const RSAPSS: Id = Id(ffi::EVP_PKEY_RSA_PSS);
pub const DSA: Id = Id(ffi::EVP_PKEY_DSA);
pub const DH: Id = Id(ffi::EVP_PKEY_DH);
pub const EC: Id = Id(ffi::EVP_PKEY_EC);
pub const ED25519: Id = Id(ffi::EVP_PKEY_ED25519);
pub const ED448: Id = Id(ffi::EVP_PKEY_ED448);
pub const X25519: Id = Id(ffi::EVP_PKEY_X25519);
pub const X448: Id = Id(ffi::EVP_PKEY_X448);
/// Creates a `Id` from an integer representation.
#[must_use]
pub fn from_raw(value: c_int) -> Id {
Id(value)
}
/// Returns the integer representation of the `Id`.
#[allow(clippy::trivially_copy_pass_by_ref)]
#[must_use]
pub fn as_raw(&self) -> c_int {
self.0
}
}
/// A trait indicating that a key has parameters.
#[allow(clippy::missing_safety_doc)]
pub unsafe trait HasParams {}
unsafe impl HasParams for Params {}
unsafe impl<T> HasParams for T where T: HasPublic {}
/// A trait indicating that a key has public components.
#[allow(clippy::missing_safety_doc)]
pub unsafe trait HasPublic {}
unsafe impl HasPublic for Public {}
unsafe impl<T> HasPublic for T where T: HasPrivate {}
/// A trait indicating that a key has private components.
#[allow(clippy::missing_safety_doc)]
pub unsafe trait HasPrivate {}
unsafe impl HasPrivate for Private {}
generic_foreign_type_and_impl_send_sync! {
type CType = ffi::EVP_PKEY;
fn drop = ffi::EVP_PKEY_free;
/// A public or private key.
pub struct PKey<T>;
/// Reference to [`PKey`].
pub struct PKeyRef<T>;
}
impl<T> ToOwned for PKeyRef<T> {
type Owned = PKey<T>;
fn to_owned(&self) -> PKey<T> {
unsafe {
EVP_PKEY_up_ref(self.as_ptr());
PKey::from_ptr(self.as_ptr())
}
}
}
impl<T> PKeyRef<T> {
/// Returns a copy of the internal RSA key.
#[corresponds(EVP_PKEY_get1_RSA)]
pub fn rsa(&self) -> Result<Rsa<T>, ErrorStack> {
unsafe {
let rsa = cvt_p(ffi::EVP_PKEY_get1_RSA(self.as_ptr()))?;
Ok(Rsa::from_ptr(rsa))
}
}
/// Returns a copy of the internal DSA key.
#[corresponds(EVP_PKEY_get1_DSA)]
pub fn dsa(&self) -> Result<Dsa<T>, ErrorStack> {
unsafe {
let dsa = cvt_p(ffi::EVP_PKEY_get1_DSA(self.as_ptr()))?;
Ok(Dsa::from_ptr(dsa))
}
}
/// Returns a copy of the internal DH key.
#[corresponds(EVP_PKEY_get1_DH)]
pub fn dh(&self) -> Result<Dh<T>, ErrorStack> {
unsafe {
let dh = cvt_p(ffi::EVP_PKEY_get1_DH(self.as_ptr()))?;
Ok(Dh::from_ptr(dh))
}
}
/// Returns a copy of the internal elliptic curve key.
#[corresponds(EVP_PKEY_get1_EC_KEY)]
pub fn ec_key(&self) -> Result<EcKey<T>, ErrorStack> {
unsafe {
let ec_key = cvt_p(ffi::EVP_PKEY_get1_EC_KEY(self.as_ptr()))?;
Ok(EcKey::from_ptr(ec_key))
}
}
/// Returns the `Id` that represents the type of this key.
#[corresponds(EVP_PKEY_id)]
#[must_use]
pub fn id(&self) -> Id {
unsafe { Id::from_raw(ffi::EVP_PKEY_id(self.as_ptr())) }
}
/// Returns the maximum size of a signature in bytes.
#[corresponds(EVP_PKEY_size)]
#[must_use]
pub fn size(&self) -> usize {
unsafe { ffi::EVP_PKEY_size(self.as_ptr()) as usize }
}
}
impl<T> PKeyRef<T>
where
T: HasPublic,
{
to_pem! {
/// Serializes the public key into a PEM-encoded SubjectPublicKeyInfo structure.
///
/// The output will have a header of `-----BEGIN PUBLIC KEY-----`.
#[corresponds(PEM_write_bio_PUBKEY)]
public_key_to_pem,
ffi::PEM_write_bio_PUBKEY
}
to_der! {
/// Serializes the public key into a DER-encoded SubjectPublicKeyInfo structure.
#[corresponds(i2d_PUBKEY)]
public_key_to_der,
ffi::i2d_PUBKEY
}
/// Returns the size of the key.
///
/// This corresponds to the bit length of the modulus of an RSA key, and the bit length of the
/// group order for an elliptic curve key, for example.
#[must_use]
pub fn bits(&self) -> u32 {
unsafe { ffi::EVP_PKEY_bits(self.as_ptr()) as u32 }
}
/// Compares the public component of this key with another.
#[must_use]
pub fn public_eq<U>(&self, other: &PKeyRef<U>) -> bool
where
U: HasPublic,
{
unsafe { ffi::EVP_PKEY_cmp(self.as_ptr(), other.as_ptr()) == 1 }
}
/// Returns the length of the "raw" form of the public key. Only supported for certain key types.
#[corresponds(EVP_PKEY_get_raw_public_key)]
pub fn raw_public_key_len(&self) -> Result<usize, ErrorStack> {
unsafe {
let mut size = 0;
_ = cvt_0i(ffi::EVP_PKEY_get_raw_public_key(
self.as_ptr(),
std::ptr::null_mut(),
&mut size,
))?;
Ok(size)
}
}
/// Outputs a copy of the "raw" form of the public key. Only supported for certain key types.
///
/// Returns the used portion of `out`.
#[corresponds(EVP_PKEY_get_raw_public_key)]
pub fn raw_public_key<'a>(&self, out: &'a mut [u8]) -> Result<&'a [u8], ErrorStack> {
unsafe {
let mut size = out.len();
_ = cvt_0i(ffi::EVP_PKEY_get_raw_public_key(
self.as_ptr(),
out.as_mut_ptr(),
&mut size,
))?;
Ok(&out[..size])
}
}
}
impl<T> PKeyRef<T>
where
T: HasPrivate,
{
private_key_to_pem! {
/// Serializes the private key to a PEM-encoded PKCS#8 PrivateKeyInfo structure.
///
/// The output will have a header of `-----BEGIN PRIVATE KEY-----`.
#[corresponds(PEM_write_bio_PKCS8PrivateKey)]
private_key_to_pem_pkcs8,
/// Serializes the private key to a PEM-encoded PKCS#8 EncryptedPrivateKeyInfo structure.
///
/// The output will have a header of `-----BEGIN ENCRYPTED PRIVATE KEY-----`.
#[corresponds(PEM_write_bio_PKCS8PrivateKey)]
private_key_to_pem_pkcs8_passphrase,
ffi::PEM_write_bio_PKCS8PrivateKey
}
to_der! {
/// Serializes the private key to a DER-encoded key type specific format.
#[corresponds(i2d_PrivateKey)]
private_key_to_der,
ffi::i2d_PrivateKey
}
// This isn't actually PEM output, but `i2d_PKCS8PrivateKey_bio` is documented to be
// "identical to the corresponding PEM function", and it's declared in pem.h.
private_key_to_pem! {
/// Serializes the private key to a DER-encoded PKCS#8 PrivateKeyInfo structure.
#[corresponds(i2d_PKCS8PrivateKey_bio)]
private_key_to_der_pkcs8,
/// Serializes the private key to a DER-encoded PKCS#8 EncryptedPrivateKeyInfo structure.
#[corresponds(i2d_PKCS8PrivateKey_bio)]
private_key_to_der_pkcs8_passphrase,
ffi::i2d_PKCS8PrivateKey_bio
}
/// Returns the length of the "raw" form of the private key. Only supported for certain key types.
#[corresponds(EVP_PKEY_get_raw_private_key)]
pub fn raw_private_key_len(&self) -> Result<usize, ErrorStack> {
unsafe {
let mut size = 0;
_ = cvt_0i(ffi::EVP_PKEY_get_raw_private_key(
self.as_ptr(),
std::ptr::null_mut(),
&mut size,
))?;
Ok(size)
}
}
/// Outputs a copy of the "raw" form of the private key. Only supported for certain key types.
///
/// Returns the used portion of `out`.
#[corresponds(EVP_PKEY_get_raw_private_key)]
pub fn raw_private_key<'a>(&self, out: &'a mut [u8]) -> Result<&'a [u8], ErrorStack> {
unsafe {
let mut size = out.len();
_ = cvt_0i(ffi::EVP_PKEY_get_raw_private_key(
self.as_ptr(),
out.as_mut_ptr(),
&mut size,
))?;
Ok(&out[..size])
}
}
}
impl<T> fmt::Debug for PKey<T> {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
let alg = match self.id() {
Id::RSA => "RSA",
Id::RSAPSS => "RSAPSS",
Id::DSA => "DSA",
Id::DH => "DH",
Id::EC => "EC",
Id::ED25519 => "Ed25519",
Id::ED448 => "Ed448",
_ => "unknown",
};
fmt.debug_struct("PKey").field("algorithm", &alg).finish()
// TODO: Print details for each specific type of key
}
}
impl<T> Clone for PKey<T> {
fn clone(&self) -> PKey<T> {
PKeyRef::to_owned(self)
}
}
impl<T> PKey<T> {
/// Creates a new `PKey` containing an RSA key.
#[corresponds(EVP_PKEY_assign_RSA)]
pub fn from_rsa(rsa: Rsa<T>) -> Result<PKey<T>, ErrorStack> {
unsafe {
let evp = cvt_p(ffi::EVP_PKEY_new())?;
let pkey = PKey::from_ptr(evp);
cvt(ffi::EVP_PKEY_assign(
pkey.0,
ffi::EVP_PKEY_RSA,
rsa.as_ptr() as *mut _,
))?;
mem::forget(rsa);
Ok(pkey)
}
}
/// Creates a new `PKey` containing an elliptic curve key.
#[corresponds(EVP_PKEY_assign_EC_KEY)]
pub fn from_ec_key(ec_key: EcKey<T>) -> Result<PKey<T>, ErrorStack> {
unsafe {
let evp = cvt_p(ffi::EVP_PKEY_new())?;
let pkey = PKey::from_ptr(evp);
cvt(ffi::EVP_PKEY_assign(
pkey.0,
ffi::EVP_PKEY_EC,
ec_key.as_ptr() as *mut _,
))?;
mem::forget(ec_key);
Ok(pkey)
}
}
}
impl PKey<Private> {
private_key_from_pem! {
/// Deserializes a private key from a PEM-encoded key type specific format.
#[corresponds(PEM_read_bio_PrivateKey)]
private_key_from_pem,
/// Deserializes a private key from a PEM-encoded encrypted key type specific format.
#[corresponds(PEM_read_bio_PrivateKey)]
private_key_from_pem_passphrase,
/// Deserializes a private key from a PEM-encoded encrypted key type specific format.
///
/// The callback should fill the password into the provided buffer and return its length.
#[corresponds(PEM_read_bio_PrivateKey)]
private_key_from_pem_callback,
PKey<Private>,
ffi::PEM_read_bio_PrivateKey
}
from_der! {
/// Decodes a DER-encoded private key.
///
/// This function will automatically attempt to detect the underlying key format, and
/// supports the unencrypted PKCS#8 PrivateKeyInfo structures as well as key type specific
/// formats.
#[corresponds(d2i_AutoPrivateKey)]
private_key_from_der,
PKey<Private>,
ffi::d2i_AutoPrivateKey,
::libc::c_long
}
/// Deserializes a DER-formatted PKCS#8 unencrypted private key.
///
/// This method is mainly for interoperability reasons. Encrypted keyfiles should be preferred.
pub fn private_key_from_pkcs8(der: &[u8]) -> Result<PKey<Private>, ErrorStack> {
unsafe {
ffi::init();
let len = der.len().min(c_long::MAX as usize) as c_long;
let p8inf = cvt_p(ffi::d2i_PKCS8_PRIV_KEY_INFO(
ptr::null_mut(),
&mut der.as_ptr(),
len,
))?;
let res = cvt_p(ffi::EVP_PKCS82PKEY(p8inf)).map(|p| PKey::from_ptr(p));
ffi::PKCS8_PRIV_KEY_INFO_free(p8inf);
res
}
}
/// Deserializes a DER-formatted PKCS#8 private key, using a callback to retrieve the password
/// if the key is encrypted.
///
/// The callback should copy the password into the provided buffer and return the number of
/// bytes written.
pub fn private_key_from_pkcs8_callback<F>(
der: &[u8],
callback: F,
) -> Result<PKey<Private>, ErrorStack>
where
F: FnOnce(&mut [u8]) -> Result<usize, ErrorStack>,
{
unsafe {
ffi::init();
let mut cb = CallbackState::new(callback);
let bio = MemBioSlice::new(der)?;
cvt_p(ffi::d2i_PKCS8PrivateKey_bio(
bio.as_ptr(),
ptr::null_mut(),
Some(invoke_passwd_cb::<F>),
&mut cb as *mut _ as *mut _,
))
.map(|p| PKey::from_ptr(p))
}
}
/// Deserializes a DER-formatted PKCS#8 private key, using the supplied password if the key is
/// encrypted.
///
/// # Panics
///
/// Panics if `passphrase` contains an embedded null.
pub fn private_key_from_pkcs8_passphrase(
der: &[u8],
passphrase: &[u8],
) -> Result<PKey<Private>, ErrorStack> {
unsafe {
ffi::init();
let bio = MemBioSlice::new(der)?;
let passphrase = CString::new(passphrase).map_err(ErrorStack::internal_error)?;
cvt_p(ffi::d2i_PKCS8PrivateKey_bio(
bio.as_ptr(),
ptr::null_mut(),
None,
passphrase.as_ptr() as *const _ as *mut _,
))
.map(|p| PKey::from_ptr(p))
}
}
}
impl PKey<Public> {
from_pem! {
/// Decodes a PEM-encoded SubjectPublicKeyInfo structure.
///
/// The input should have a header of `-----BEGIN PUBLIC KEY-----`.
#[corresponds(PEM_read_bio_PUBKEY)]
public_key_from_pem,
PKey<Public>,
ffi::PEM_read_bio_PUBKEY
}
from_der! {
/// Decodes a DER-encoded SubjectPublicKeyInfo structure.
#[corresponds(d2i_PUBKEY)]
public_key_from_der,
PKey<Public>,
ffi::d2i_PUBKEY,
::libc::c_long
}
}
use crate::ffi::EVP_PKEY_up_ref;
#[cfg(test)]
mod tests {
use hex::FromHex as _;
use crate::ec::EcKey;
use crate::nid::Nid;
use crate::rsa::Rsa;
use crate::symm::Cipher;
use super::*;
#[test]
fn test_to_password() {
let rsa = Rsa::generate(2048).unwrap();
let pkey = PKey::from_rsa(rsa).unwrap();
let pem = pkey
.private_key_to_pem_pkcs8_passphrase(Cipher::aes_128_cbc(), b"foobar")
.unwrap();
PKey::private_key_from_pem_passphrase(&pem, b"foobar").unwrap();
assert!(PKey::private_key_from_pem_passphrase(&pem, b"fizzbuzz").is_err());
}
#[test]
fn test_unencrypted_pkcs8() {
let key = include_bytes!("../test/pkcs8-nocrypt.der");
PKey::private_key_from_pkcs8(key).unwrap();
}
#[test]
fn test_encrypted_pkcs8_passphrase() {
let key = include_bytes!("../test/pkcs8.der");
PKey::private_key_from_pkcs8_passphrase(key, b"mypass").unwrap();
}
#[test]
fn test_encrypted_pkcs8_callback() {
let mut password_queried = false;
let key = include_bytes!("../test/pkcs8.der");
PKey::private_key_from_pkcs8_callback(key, |password| {
password_queried = true;
password[..6].copy_from_slice(b"mypass");
Ok(6)
})
.unwrap();
assert!(password_queried);
}
#[test]
fn test_private_key_from_pem() {
let key = include_bytes!("../test/key.pem");
PKey::private_key_from_pem(key).unwrap();
}
#[test]
fn test_public_key_from_pem() {
let key = include_bytes!("../test/key.pem.pub");
PKey::public_key_from_pem(key).unwrap();
}
#[test]
fn test_public_key_from_der() {
let key = include_bytes!("../test/key.der.pub");
PKey::public_key_from_der(key).unwrap();
}
#[test]
fn test_private_key_from_der() {
let key = include_bytes!("../test/key.der");
PKey::private_key_from_der(key).unwrap();
}
#[test]
fn test_pem() {
let key = include_bytes!("../test/key.pem");
let key = PKey::private_key_from_pem(key).unwrap();
let priv_key = key.private_key_to_pem_pkcs8().unwrap();
let pub_key = key.public_key_to_pem().unwrap();
// As a super-simple verification, just check that the buffers contain
// the `PRIVATE KEY` or `PUBLIC KEY` strings.
assert!(priv_key.windows(11).any(|s| s == b"PRIVATE KEY"));
assert!(pub_key.windows(10).any(|s| s == b"PUBLIC KEY"));
}
#[test]
fn test_der_pkcs8() {
let key = include_bytes!("../test/key.der");
let key = PKey::private_key_from_der(key).unwrap();
let priv_key = key.private_key_to_der_pkcs8().unwrap();
// Check that this has the correct PKCS#8 version number and algorithm.
assert_eq!(hex::encode(&priv_key[4..=6]), "020100"); // Version 0
assert_eq!(hex::encode(&priv_key[9..=19]), "06092a864886f70d010101"); // Algorithm RSA/PKCS#1
}
#[test]
fn test_rsa_accessor() {
let rsa = Rsa::generate(2048).unwrap();
let pkey = PKey::from_rsa(rsa).unwrap();
pkey.rsa().unwrap();
assert_eq!(pkey.id(), Id::RSA);
assert!(pkey.dsa().is_err());
}
#[test]
fn test_ec_key_accessor() {
let ec_key = EcKey::from_curve_name(Nid::X9_62_PRIME256V1).unwrap();
let pkey = PKey::from_ec_key(ec_key).unwrap();
pkey.ec_key().unwrap();
assert_eq!(pkey.id(), Id::EC);
assert!(pkey.rsa().is_err());
}
#[test]
fn test_raw_accessors() {
const ED25519_PRIVATE_KEY_DER: &str = concat!(
"302e020100300506032b6570042204207c8c6497f9960d5595d7815f550569e5",
"f77764ac97e63e339aaa68cc1512b683"
);
let pkey =
PKey::private_key_from_der(&Vec::from_hex(ED25519_PRIVATE_KEY_DER).unwrap()).unwrap();
assert_eq!(pkey.id(), Id::ED25519);
let priv_len = pkey.raw_private_key_len().unwrap();
assert_eq!(priv_len, 32);
let mut raw_private_key_buf = [0; 40];
let raw_private_key = pkey.raw_private_key(&mut raw_private_key_buf).unwrap();
assert_eq!(raw_private_key.len(), 32);
assert_ne!(raw_private_key, [0; 32]);
pkey.raw_private_key(&mut [0; 5])
.expect_err("buffer too small");
let pub_len = pkey.raw_public_key_len().unwrap();
assert_eq!(pub_len, 32);
let mut raw_public_key_buf = [0; 40];
let raw_public_key = pkey.raw_public_key(&mut raw_public_key_buf).unwrap();
assert_eq!(raw_public_key.len(), 32);
assert_ne!(raw_public_key, [0; 32]);
assert_ne!(raw_public_key, raw_private_key);
pkey.raw_public_key(&mut [0; 5])
.expect_err("buffer too small");
}
}