596 lines
17 KiB
Rust
596 lines
17 KiB
Rust
use libc::{c_int, c_uint, c_ulong};
|
|
use std::io;
|
|
use std::io::prelude::*;
|
|
use std::iter::repeat;
|
|
use std::mem;
|
|
use std::ptr;
|
|
use bio::{MemBio};
|
|
use crypto::hash;
|
|
use crypto::hash::Type as HashType;
|
|
use ffi;
|
|
use ssl::error::{SslError, StreamError};
|
|
|
|
#[derive(Copy, Clone)]
|
|
pub enum Parts {
|
|
Neither,
|
|
Public,
|
|
Both
|
|
}
|
|
|
|
/// Represents a role an asymmetric key might be appropriate for.
|
|
#[derive(Copy, Clone)]
|
|
pub enum Role {
|
|
Encrypt,
|
|
Decrypt,
|
|
Sign,
|
|
Verify
|
|
}
|
|
|
|
/// Type of encryption padding to use.
|
|
#[derive(Copy, Clone)]
|
|
pub enum EncryptionPadding {
|
|
OAEP,
|
|
PKCS1v15
|
|
}
|
|
|
|
fn openssl_padding_code(padding: EncryptionPadding) -> c_int {
|
|
match padding {
|
|
EncryptionPadding::OAEP => 4,
|
|
EncryptionPadding::PKCS1v15 => 1
|
|
}
|
|
}
|
|
|
|
fn openssl_hash_nid(hash: HashType) -> c_int {
|
|
match hash {
|
|
HashType::MD5 => 4, // NID_md5,
|
|
HashType::SHA1 => 64, // NID_sha1
|
|
HashType::SHA224 => 675, // NID_sha224
|
|
HashType::SHA256 => 672, // NID_sha256
|
|
HashType::SHA384 => 673, // NID_sha384
|
|
HashType::SHA512 => 674, // NID_sha512
|
|
HashType::RIPEMD160 => 117, // NID_ripemd160
|
|
}
|
|
}
|
|
|
|
pub struct PKey {
|
|
evp: *mut ffi::EVP_PKEY,
|
|
parts: Parts,
|
|
}
|
|
|
|
/// Represents a public key, optionally with a private key attached.
|
|
impl PKey {
|
|
pub fn new() -> PKey {
|
|
unsafe {
|
|
ffi::init();
|
|
|
|
PKey {
|
|
evp: ffi::EVP_PKEY_new(),
|
|
parts: Parts::Neither,
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn from_handle(handle: *mut ffi::EVP_PKEY, parts: Parts) -> PKey {
|
|
ffi::init();
|
|
assert!(!handle.is_null());
|
|
|
|
PKey {
|
|
evp: handle,
|
|
parts: parts,
|
|
}
|
|
}
|
|
|
|
/// Reads private key from PEM, takes ownership of handle
|
|
pub fn private_key_from_pem<R>(reader: &mut R) -> Result<PKey, SslError> where R: Read {
|
|
let mut mem_bio = try!(MemBio::new());
|
|
try!(io::copy(reader, &mut mem_bio).map_err(StreamError));
|
|
|
|
unsafe {
|
|
let evp = try_ssl_null!(ffi::PEM_read_bio_PrivateKey(mem_bio.get_handle(),
|
|
ptr::null_mut(),
|
|
None, ptr::null_mut()));
|
|
Ok(PKey {
|
|
evp: evp,
|
|
parts: Parts::Both,
|
|
})
|
|
}
|
|
}
|
|
|
|
fn _tostr(&self, f: unsafe extern "C" fn(*mut ffi::RSA, *const *mut u8) -> c_int) -> Vec<u8> {
|
|
unsafe {
|
|
let rsa = ffi::EVP_PKEY_get1_RSA(self.evp);
|
|
let len = f(rsa, ptr::null());
|
|
if len < 0 as c_int { return vec!(); }
|
|
let mut s = repeat(0u8).take(len as usize).collect::<Vec<_>>();
|
|
|
|
let r = f(rsa, &s.as_mut_ptr());
|
|
|
|
s.truncate(r as usize);
|
|
s
|
|
}
|
|
}
|
|
|
|
fn _fromstr(&mut self, s: &[u8], f: unsafe extern "C" fn(*const *mut ffi::RSA, *const *const u8, c_uint) -> *mut ffi::RSA) -> bool {
|
|
unsafe {
|
|
let rsa = ptr::null_mut();
|
|
f(&rsa, &s.as_ptr(), s.len() as c_uint);
|
|
if !rsa.is_null() {
|
|
ffi::EVP_PKEY_set1_RSA(self.evp, rsa) == 1
|
|
}
|
|
else {
|
|
false
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn gen(&mut self, keysz: usize) {
|
|
unsafe {
|
|
let rsa = ffi::RSA_generate_key(
|
|
keysz as c_int,
|
|
65537 as c_ulong,
|
|
ptr::null(),
|
|
ptr::null()
|
|
);
|
|
|
|
// XXX: 6 == NID_rsaEncryption
|
|
ffi::EVP_PKEY_assign(
|
|
self.evp,
|
|
6 as c_int,
|
|
mem::transmute(rsa));
|
|
|
|
self.parts = Parts::Both;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns a serialized form of the public key, suitable for load_pub().
|
|
*/
|
|
pub fn save_pub(&self) -> Vec<u8> {
|
|
self._tostr(ffi::i2d_RSA_PUBKEY)
|
|
}
|
|
|
|
/**
|
|
* Loads a serialized form of the public key, as produced by save_pub().
|
|
*/
|
|
pub fn load_pub(&mut self, s: &[u8]) {
|
|
if self._fromstr(s, ffi::d2i_RSA_PUBKEY) {
|
|
self.parts = Parts::Public;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns a serialized form of the public and private keys, suitable for
|
|
* load_priv().
|
|
*/
|
|
pub fn save_priv(&self) -> Vec<u8> {
|
|
self._tostr(ffi::i2d_RSAPrivateKey)
|
|
}
|
|
/**
|
|
* Loads a serialized form of the public and private keys, as produced by
|
|
* save_priv().
|
|
*/
|
|
pub fn load_priv(&mut self, s: &[u8]) {
|
|
if self._fromstr(s, ffi::d2i_RSAPrivateKey) {
|
|
self.parts = Parts::Both;
|
|
}
|
|
}
|
|
|
|
/// Stores private key as a PEM
|
|
// FIXME: also add password and encryption
|
|
pub fn write_pem<W: Write>(&self, writer: &mut W/*, password: Option<String>*/) -> Result<(), SslError> {
|
|
let mut mem_bio = try!(MemBio::new());
|
|
unsafe {
|
|
try_ssl!(ffi::PEM_write_bio_PrivateKey(mem_bio.get_handle(), self.evp, ptr::null(),
|
|
ptr::null_mut(), -1, None, ptr::null_mut()));
|
|
|
|
}
|
|
let mut buf = vec![];
|
|
try!(mem_bio.read_to_end(&mut buf).map_err(StreamError));
|
|
writer.write_all(&buf).map_err(StreamError)
|
|
}
|
|
|
|
/// Stores public key as a PEM
|
|
pub fn write_pub_pem<W: Write>(&self, writer: &mut W/*, password: Option<String>*/) -> Result<(), SslError> {
|
|
let mut mem_bio = try!(MemBio::new());
|
|
unsafe {
|
|
try_ssl!(ffi::PEM_write_bio_PUBKEY(mem_bio.get_handle(), self.evp))
|
|
}
|
|
let mut buf = vec![];
|
|
try!(mem_bio.read_to_end(&mut buf).map_err(StreamError));
|
|
writer.write_all(&buf).map_err(StreamError)
|
|
}
|
|
|
|
/**
|
|
* Returns the size of the public key modulus.
|
|
*/
|
|
pub fn size(&self) -> usize {
|
|
unsafe {
|
|
let rsa = ffi::EVP_PKEY_get1_RSA(self.evp);
|
|
if rsa.is_null() {
|
|
0
|
|
}
|
|
else {
|
|
ffi::RSA_size(rsa) as usize
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns whether this pkey object can perform the specified role.
|
|
*/
|
|
pub fn can(&self, r: Role) -> bool {
|
|
match r {
|
|
Role::Encrypt =>
|
|
match self.parts {
|
|
Parts::Neither => false,
|
|
_ => true,
|
|
},
|
|
Role::Verify =>
|
|
match self.parts {
|
|
Parts::Neither => false,
|
|
_ => true,
|
|
},
|
|
Role::Decrypt =>
|
|
match self.parts {
|
|
Parts::Both => true,
|
|
_ => false,
|
|
},
|
|
Role::Sign =>
|
|
match self.parts {
|
|
Parts::Both => true,
|
|
_ => false,
|
|
},
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns the maximum amount of data that can be encrypted by an encrypt()
|
|
* call.
|
|
*/
|
|
pub fn max_data(&self) -> usize {
|
|
unsafe {
|
|
let rsa = ffi::EVP_PKEY_get1_RSA(self.evp);
|
|
if rsa.is_null() {
|
|
return 0;
|
|
}
|
|
let len = ffi::RSA_size(rsa);
|
|
|
|
// 41 comes from RSA_public_encrypt(3) for OAEP
|
|
len as usize - 41
|
|
}
|
|
}
|
|
|
|
pub fn encrypt_with_padding(&self, s: &[u8], padding: EncryptionPadding) -> Vec<u8> {
|
|
unsafe {
|
|
let rsa = ffi::EVP_PKEY_get1_RSA(self.evp);
|
|
if rsa.is_null() {
|
|
panic!("Could not get RSA key for encryption");
|
|
}
|
|
let len = ffi::RSA_size(rsa);
|
|
|
|
assert!(s.len() < self.max_data());
|
|
|
|
let mut r = repeat(0u8).take(len as usize + 1).collect::<Vec<_>>();
|
|
|
|
let rv = ffi::RSA_public_encrypt(
|
|
s.len() as c_int,
|
|
s.as_ptr(),
|
|
r.as_mut_ptr(),
|
|
rsa,
|
|
openssl_padding_code(padding));
|
|
|
|
if rv < 0 as c_int {
|
|
vec!()
|
|
} else {
|
|
r.truncate(rv as usize);
|
|
r
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn decrypt_with_padding(&self, s: &[u8], padding: EncryptionPadding) -> Vec<u8> {
|
|
unsafe {
|
|
let rsa = ffi::EVP_PKEY_get1_RSA(self.evp);
|
|
if rsa.is_null() {
|
|
panic!("Could not get RSA key for decryption");
|
|
}
|
|
let len = ffi::RSA_size(rsa);
|
|
|
|
assert_eq!(s.len() as c_int, ffi::RSA_size(rsa));
|
|
|
|
let mut r = repeat(0u8).take(len as usize + 1).collect::<Vec<_>>();
|
|
|
|
let rv = ffi::RSA_private_decrypt(
|
|
s.len() as c_int,
|
|
s.as_ptr(),
|
|
r.as_mut_ptr(),
|
|
rsa,
|
|
openssl_padding_code(padding));
|
|
|
|
if rv < 0 as c_int {
|
|
vec!()
|
|
} else {
|
|
r.truncate(rv as usize);
|
|
r
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Encrypts data using OAEP padding, returning the encrypted data. The
|
|
* supplied data must not be larger than max_data().
|
|
*/
|
|
pub fn encrypt(&self, s: &[u8]) -> Vec<u8> { self.encrypt_with_padding(s, EncryptionPadding::OAEP) }
|
|
|
|
/**
|
|
* Decrypts data, expecting OAEP padding, returning the decrypted data.
|
|
*/
|
|
pub fn decrypt(&self, s: &[u8]) -> Vec<u8> { self.decrypt_with_padding(s, EncryptionPadding::OAEP) }
|
|
|
|
/**
|
|
* Signs data, using OpenSSL's default scheme and adding sha256 ASN.1 information to the
|
|
* signature.
|
|
* The bytes to sign must be the result of a sha256 hashing;
|
|
* returns the signature.
|
|
*/
|
|
pub fn sign(&self, s: &[u8]) -> Vec<u8> { self.sign_with_hash(s, HashType::SHA256) }
|
|
|
|
/**
|
|
* Verifies a signature s (using OpenSSL's default scheme and sha256) on the SHA256 hash of a
|
|
* message.
|
|
* Returns true if the signature is valid, and false otherwise.
|
|
*/
|
|
pub fn verify(&self, h: &[u8], s: &[u8]) -> bool { self.verify_with_hash(h, s, HashType::SHA256) }
|
|
|
|
/**
|
|
* Signs data, using OpenSSL's default scheme and add ASN.1 information for the given hash type to the
|
|
* signature.
|
|
* The bytes to sign must be the result of this type of hashing;
|
|
* returns the signature.
|
|
*/
|
|
pub fn sign_with_hash(&self, s: &[u8], hash: hash::Type) -> Vec<u8> {
|
|
unsafe {
|
|
let rsa = ffi::EVP_PKEY_get1_RSA(self.evp);
|
|
let len = ffi::RSA_size(rsa);
|
|
if rsa.is_null() {
|
|
panic!("Could not get RSA key for signing");
|
|
}
|
|
let mut r = repeat(0u8).take(len as usize + 1).collect::<Vec<_>>();
|
|
|
|
let mut len = 0;
|
|
let rv = ffi::RSA_sign(
|
|
openssl_hash_nid(hash),
|
|
s.as_ptr(),
|
|
s.len() as c_uint,
|
|
r.as_mut_ptr(),
|
|
&mut len,
|
|
rsa);
|
|
|
|
if rv < 0 as c_int {
|
|
vec!()
|
|
} else {
|
|
r.truncate(len as usize);
|
|
r
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn verify_with_hash(&self, h: &[u8], s: &[u8], hash: hash::Type) -> bool {
|
|
unsafe {
|
|
let rsa = ffi::EVP_PKEY_get1_RSA(self.evp);
|
|
if rsa.is_null() {
|
|
panic!("Could not get RSA key for verification");
|
|
}
|
|
|
|
let rv = ffi::RSA_verify(
|
|
openssl_hash_nid(hash),
|
|
h.as_ptr(),
|
|
h.len() as c_uint,
|
|
s.as_ptr(),
|
|
s.len() as c_uint,
|
|
rsa
|
|
);
|
|
|
|
rv == 1 as c_int
|
|
}
|
|
}
|
|
|
|
pub unsafe fn get_handle(&self) -> *mut ffi::EVP_PKEY {
|
|
return self.evp
|
|
}
|
|
|
|
pub fn public_eq(&self, other: &PKey) -> bool {
|
|
unsafe { ffi::EVP_PKEY_cmp(self.evp, other.evp) == 1 }
|
|
}
|
|
}
|
|
|
|
impl Drop for PKey {
|
|
fn drop(&mut self) {
|
|
unsafe {
|
|
ffi::EVP_PKEY_free(self.evp);
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use std::path::Path;
|
|
use std::fs::File;
|
|
use crypto::hash::Type::{MD5, SHA1};
|
|
|
|
#[test]
|
|
fn test_gen_pub() {
|
|
let mut k0 = super::PKey::new();
|
|
let mut k1 = super::PKey::new();
|
|
k0.gen(512);
|
|
k1.load_pub(&k0.save_pub());
|
|
assert_eq!(k0.save_pub(), k1.save_pub());
|
|
assert!(k0.public_eq(&k1));
|
|
assert_eq!(k0.size(), k1.size());
|
|
assert!(k0.can(super::Role::Encrypt));
|
|
assert!(k0.can(super::Role::Decrypt));
|
|
assert!(k0.can(super::Role::Verify));
|
|
assert!(k0.can(super::Role::Sign));
|
|
assert!(k1.can(super::Role::Encrypt));
|
|
assert!(!k1.can(super::Role::Decrypt));
|
|
assert!(k1.can(super::Role::Verify));
|
|
assert!(!k1.can(super::Role::Sign));
|
|
}
|
|
|
|
#[test]
|
|
fn test_gen_priv() {
|
|
let mut k0 = super::PKey::new();
|
|
let mut k1 = super::PKey::new();
|
|
k0.gen(512);
|
|
k1.load_priv(&k0.save_priv());
|
|
assert_eq!(k0.save_priv(), k1.save_priv());
|
|
assert!(k0.public_eq(&k1));
|
|
assert_eq!(k0.size(), k1.size());
|
|
assert!(k0.can(super::Role::Encrypt));
|
|
assert!(k0.can(super::Role::Decrypt));
|
|
assert!(k0.can(super::Role::Verify));
|
|
assert!(k0.can(super::Role::Sign));
|
|
assert!(k1.can(super::Role::Encrypt));
|
|
assert!(k1.can(super::Role::Decrypt));
|
|
assert!(k1.can(super::Role::Verify));
|
|
assert!(k1.can(super::Role::Sign));
|
|
}
|
|
|
|
#[test]
|
|
fn test_private_key_from_pem() {
|
|
let key_path = Path::new("test/key.pem");
|
|
let mut file = File::open(&key_path)
|
|
.ok()
|
|
.expect("Failed to open `test/key.pem`");
|
|
|
|
super::PKey::private_key_from_pem(&mut file).unwrap();
|
|
}
|
|
|
|
#[test]
|
|
fn test_encrypt() {
|
|
let mut k0 = super::PKey::new();
|
|
let mut k1 = super::PKey::new();
|
|
let msg = vec!(0xdeu8, 0xadu8, 0xd0u8, 0x0du8);
|
|
k0.gen(512);
|
|
k1.load_pub(&k0.save_pub());
|
|
let emsg = k1.encrypt(&msg);
|
|
let dmsg = k0.decrypt(&emsg);
|
|
assert!(msg == dmsg);
|
|
}
|
|
|
|
#[test]
|
|
fn test_encrypt_pkcs() {
|
|
let mut k0 = super::PKey::new();
|
|
let mut k1 = super::PKey::new();
|
|
let msg = vec!(0xdeu8, 0xadu8, 0xd0u8, 0x0du8);
|
|
k0.gen(512);
|
|
k1.load_pub(&k0.save_pub());
|
|
let emsg = k1.encrypt_with_padding(&msg, super::EncryptionPadding::PKCS1v15);
|
|
let dmsg = k0.decrypt_with_padding(&emsg, super::EncryptionPadding::PKCS1v15);
|
|
assert!(msg == dmsg);
|
|
}
|
|
|
|
#[test]
|
|
fn test_sign() {
|
|
let mut k0 = super::PKey::new();
|
|
let mut k1 = super::PKey::new();
|
|
let msg = vec!(0xdeu8, 0xadu8, 0xd0u8, 0x0du8);
|
|
k0.gen(512);
|
|
k1.load_pub(&k0.save_pub());
|
|
let sig = k0.sign(&msg);
|
|
let rv = k1.verify(&msg, &sig);
|
|
assert!(rv == true);
|
|
}
|
|
|
|
#[test]
|
|
fn test_sign_hashes() {
|
|
let mut k0 = super::PKey::new();
|
|
let mut k1 = super::PKey::new();
|
|
let msg = vec!(0xdeu8, 0xadu8, 0xd0u8, 0x0du8);
|
|
k0.gen(512);
|
|
k1.load_pub(&k0.save_pub());
|
|
|
|
let sig = k0.sign_with_hash(&msg, MD5);
|
|
|
|
assert!(k1.verify_with_hash(&msg, &sig, MD5));
|
|
assert!(!k1.verify_with_hash(&msg, &sig, SHA1));
|
|
}
|
|
|
|
#[test]
|
|
fn test_eq() {
|
|
let mut k0 = super::PKey::new();
|
|
let mut p0 = super::PKey::new();
|
|
let mut k1 = super::PKey::new();
|
|
let mut p1 = super::PKey::new();
|
|
k0.gen(512);
|
|
k1.gen(512);
|
|
p0.load_pub(&k0.save_pub());
|
|
p1.load_pub(&k1.save_pub());
|
|
|
|
assert!(k0.public_eq(&k0));
|
|
assert!(k1.public_eq(&k1));
|
|
assert!(p0.public_eq(&p0));
|
|
assert!(p1.public_eq(&p1));
|
|
assert!(k0.public_eq(&p0));
|
|
assert!(k1.public_eq(&p1));
|
|
|
|
assert!(!k0.public_eq(&k1));
|
|
assert!(!p0.public_eq(&p1));
|
|
assert!(!k0.public_eq(&p1));
|
|
assert!(!p0.public_eq(&k1));
|
|
}
|
|
|
|
#[test]
|
|
fn test_pem() {
|
|
let key_path = Path::new("test/key.pem");
|
|
let mut file = File::open(&key_path)
|
|
.ok()
|
|
.expect("Failed to open `test/key.pem`");
|
|
|
|
let key = super::PKey::private_key_from_pem(&mut file).unwrap();
|
|
|
|
let mut priv_key = Vec::new();
|
|
let mut pub_key = Vec::new();
|
|
|
|
key.write_pem(&mut priv_key).unwrap();
|
|
key.write_pub_pem(&mut pub_key).unwrap();
|
|
|
|
// As a super-simple verification, just check that the buffers contain
|
|
// the `PRIVATE KEY` or `PUBLIC KEY` strings.
|
|
assert!(priv_key.windows(11).any(|s| s == b"PRIVATE KEY"));
|
|
assert!(pub_key.windows(10).any(|s| s == b"PUBLIC KEY"));
|
|
}
|
|
|
|
#[test]
|
|
#[should_panic(expected = "Could not get RSA key for encryption")]
|
|
fn test_nokey_encrypt() {
|
|
let mut pkey = super::PKey::new();
|
|
pkey.load_pub(&[]);
|
|
pkey.encrypt(&[]);
|
|
}
|
|
|
|
#[test]
|
|
#[should_panic(expected = "Could not get RSA key for decryption")]
|
|
fn test_nokey_decrypt() {
|
|
let mut pkey = super::PKey::new();
|
|
pkey.load_priv(&[]);
|
|
pkey.decrypt(&[]);
|
|
}
|
|
|
|
#[test]
|
|
#[should_panic(expected = "Could not get RSA key for signing")]
|
|
fn test_nokey_sign() {
|
|
let mut pkey = super::PKey::new();
|
|
pkey.load_priv(&[]);
|
|
pkey.sign(&[]);
|
|
}
|
|
|
|
#[test]
|
|
#[should_panic(expected = "Could not get RSA key for verification")]
|
|
fn test_nokey_verify() {
|
|
let mut pkey = super::PKey::new();
|
|
pkey.load_pub(&[]);
|
|
pkey.verify(&[], &[]);
|
|
}
|
|
}
|