boring2/openssl/src/crypto/pkey.rs

426 lines
12 KiB
Rust

use libc::{c_int, c_uint, c_ulong};
use std::io::prelude::*;
use std::iter::repeat;
use std::mem;
use std::ptr;
use bio::{MemBio};
use crypto::hash;
use crypto::hash::Type as HashType;
use ffi;
use ssl::error::{SslError, StreamError};
#[derive(Copy, Clone)]
enum Parts {
Neither,
Public,
Both
}
/// Represents a role an asymmetric key might be appropriate for.
#[derive(Copy, Clone)]
pub enum Role {
Encrypt,
Decrypt,
Sign,
Verify
}
/// Type of encryption padding to use.
#[derive(Copy, Clone)]
pub enum EncryptionPadding {
OAEP,
PKCS1v15
}
fn openssl_padding_code(padding: EncryptionPadding) -> c_int {
match padding {
EncryptionPadding::OAEP => 4,
EncryptionPadding::PKCS1v15 => 1
}
}
fn openssl_hash_nid(hash: HashType) -> c_int {
match hash {
HashType::MD5 => 4, // NID_md5,
HashType::SHA1 => 64, // NID_sha1
HashType::SHA224 => 675, // NID_sha224
HashType::SHA256 => 672, // NID_sha256
HashType::SHA384 => 673, // NID_sha384
HashType::SHA512 => 674, // NID_sha512
HashType::RIPEMD160 => 117, // NID_ripemd160
}
}
pub struct PKey {
evp: *mut ffi::EVP_PKEY,
parts: Parts,
}
/// Represents a public key, optionally with a private key attached.
impl PKey {
pub fn new() -> PKey {
unsafe {
ffi::init();
PKey {
evp: ffi::EVP_PKEY_new(),
parts: Parts::Neither,
}
}
}
fn _tostr(&self, f: unsafe extern "C" fn(*mut ffi::RSA, *const *mut u8) -> c_int) -> Vec<u8> {
unsafe {
let rsa = ffi::EVP_PKEY_get1_RSA(self.evp);
let len = f(rsa, ptr::null());
if len < 0 as c_int { return vec!(); }
let mut s = repeat(0u8).take(len as usize).collect::<Vec<_>>();
let r = f(rsa, &s.as_mut_ptr());
s.truncate(r as usize);
s
}
}
fn _fromstr(&mut self, s: &[u8], f: unsafe extern "C" fn(*const *mut ffi::RSA, *const *const u8, c_uint) -> *mut ffi::RSA) {
unsafe {
let rsa = ptr::null_mut();
f(&rsa, &s.as_ptr(), s.len() as c_uint);
ffi::EVP_PKEY_set1_RSA(self.evp, rsa);
}
}
pub fn gen(&mut self, keysz: usize) {
unsafe {
let rsa = ffi::RSA_generate_key(
keysz as c_int,
65537 as c_ulong,
ptr::null(),
ptr::null()
);
// XXX: 6 == NID_rsaEncryption
ffi::EVP_PKEY_assign(
self.evp,
6 as c_int,
mem::transmute(rsa));
self.parts = Parts::Both;
}
}
/**
* Returns a serialized form of the public key, suitable for load_pub().
*/
pub fn save_pub(&self) -> Vec<u8> {
self._tostr(ffi::i2d_RSA_PUBKEY)
}
/**
* Loads a serialized form of the public key, as produced by save_pub().
*/
pub fn load_pub(&mut self, s: &[u8]) {
self._fromstr(s, ffi::d2i_RSA_PUBKEY);
self.parts = Parts::Public;
}
/**
* Returns a serialized form of the public and private keys, suitable for
* load_priv().
*/
pub fn save_priv(&self) -> Vec<u8> {
self._tostr(ffi::i2d_RSAPrivateKey)
}
/**
* Loads a serialized form of the public and private keys, as produced by
* save_priv().
*/
pub fn load_priv(&mut self, s: &[u8]) {
self._fromstr(s, ffi::d2i_RSAPrivateKey);
self.parts = Parts::Both;
}
/// Stores private key as a PEM
// FIXME: also add password and encryption
pub fn write_pem<W: Write>(&self, writer: &mut W/*, password: Option<String>*/) -> Result<(), SslError> {
let mut mem_bio = try!(MemBio::new());
unsafe {
try_ssl!(ffi::PEM_write_bio_PrivateKey(mem_bio.get_handle(), self.evp, ptr::null(),
ptr::null_mut(), -1, None, ptr::null_mut()));
}
let mut buf = vec![];
try!(mem_bio.read_to_end(&mut buf).map_err(StreamError));
writer.write_all(&buf).map_err(StreamError)
}
/**
* Returns the size of the public key modulus.
*/
pub fn size(&self) -> usize {
unsafe {
ffi::RSA_size(ffi::EVP_PKEY_get1_RSA(self.evp)) as usize
}
}
/**
* Returns whether this pkey object can perform the specified role.
*/
pub fn can(&self, r: Role) -> bool {
match r {
Role::Encrypt =>
match self.parts {
Parts::Neither => false,
_ => true,
},
Role::Verify =>
match self.parts {
Parts::Neither => false,
_ => true,
},
Role::Decrypt =>
match self.parts {
Parts::Both => true,
_ => false,
},
Role::Sign =>
match self.parts {
Parts::Both => true,
_ => false,
},
}
}
/**
* Returns the maximum amount of data that can be encrypted by an encrypt()
* call.
*/
pub fn max_data(&self) -> usize {
unsafe {
let rsa = ffi::EVP_PKEY_get1_RSA(self.evp);
let len = ffi::RSA_size(rsa);
// 41 comes from RSA_public_encrypt(3) for OAEP
len as usize - 41
}
}
pub fn encrypt_with_padding(&self, s: &[u8], padding: EncryptionPadding) -> Vec<u8> {
unsafe {
let rsa = ffi::EVP_PKEY_get1_RSA(self.evp);
let len = ffi::RSA_size(rsa);
assert!(s.len() < self.max_data());
let mut r = repeat(0u8).take(len as usize + 1).collect::<Vec<_>>();
let rv = ffi::RSA_public_encrypt(
s.len() as c_int,
s.as_ptr(),
r.as_mut_ptr(),
rsa,
openssl_padding_code(padding));
if rv < 0 as c_int {
vec!()
} else {
r.truncate(rv as usize);
r
}
}
}
pub fn decrypt_with_padding(&self, s: &[u8], padding: EncryptionPadding) -> Vec<u8> {
unsafe {
let rsa = ffi::EVP_PKEY_get1_RSA(self.evp);
let len = ffi::RSA_size(rsa);
assert_eq!(s.len() as c_int, ffi::RSA_size(rsa));
let mut r = repeat(0u8).take(len as usize + 1).collect::<Vec<_>>();
let rv = ffi::RSA_private_decrypt(
s.len() as c_int,
s.as_ptr(),
r.as_mut_ptr(),
rsa,
openssl_padding_code(padding));
if rv < 0 as c_int {
vec!()
} else {
r.truncate(rv as usize);
r
}
}
}
/**
* Encrypts data using OAEP padding, returning the encrypted data. The
* supplied data must not be larger than max_data().
*/
pub fn encrypt(&self, s: &[u8]) -> Vec<u8> { self.encrypt_with_padding(s, EncryptionPadding::OAEP) }
/**
* Decrypts data, expecting OAEP padding, returning the decrypted data.
*/
pub fn decrypt(&self, s: &[u8]) -> Vec<u8> { self.decrypt_with_padding(s, EncryptionPadding::OAEP) }
/**
* Signs data, using OpenSSL's default scheme and sha256. Unlike encrypt(),
* can process an arbitrary amount of data; returns the signature.
*/
pub fn sign(&self, s: &[u8]) -> Vec<u8> { self.sign_with_hash(s, HashType::SHA256) }
/**
* Verifies a signature s (using OpenSSL's default scheme and sha256) on a
* message m. Returns true if the signature is valid, and false otherwise.
*/
pub fn verify(&self, m: &[u8], s: &[u8]) -> bool { self.verify_with_hash(m, s, HashType::SHA256) }
pub fn sign_with_hash(&self, s: &[u8], hash: hash::Type) -> Vec<u8> {
unsafe {
let rsa = ffi::EVP_PKEY_get1_RSA(self.evp);
let len = ffi::RSA_size(rsa);
let mut r = repeat(0u8).take(len as usize + 1).collect::<Vec<_>>();
let mut len = 0;
let rv = ffi::RSA_sign(
openssl_hash_nid(hash),
s.as_ptr(),
s.len() as c_uint,
r.as_mut_ptr(),
&mut len,
rsa);
if rv < 0 as c_int {
vec!()
} else {
r.truncate(len as usize);
r
}
}
}
pub fn verify_with_hash(&self, m: &[u8], s: &[u8], hash: hash::Type) -> bool {
unsafe {
let rsa = ffi::EVP_PKEY_get1_RSA(self.evp);
let rv = ffi::RSA_verify(
openssl_hash_nid(hash),
m.as_ptr(),
m.len() as c_uint,
s.as_ptr(),
s.len() as c_uint,
rsa
);
rv == 1 as c_int
}
}
pub unsafe fn get_handle(&self) -> *mut ffi::EVP_PKEY {
return self.evp
}
}
impl Drop for PKey {
fn drop(&mut self) {
unsafe {
ffi::EVP_PKEY_free(self.evp);
}
}
}
#[cfg(test)]
mod tests {
use crypto::hash::Type::{MD5, SHA1};
#[test]
fn test_gen_pub() {
let mut k0 = super::PKey::new();
let mut k1 = super::PKey::new();
k0.gen(512);
k1.load_pub(&k0.save_pub());
assert_eq!(k0.save_pub(), k1.save_pub());
assert_eq!(k0.size(), k1.size());
assert!(k0.can(super::Role::Encrypt));
assert!(k0.can(super::Role::Decrypt));
assert!(k0.can(super::Role::Verify));
assert!(k0.can(super::Role::Sign));
assert!(k1.can(super::Role::Encrypt));
assert!(!k1.can(super::Role::Decrypt));
assert!(k1.can(super::Role::Verify));
assert!(!k1.can(super::Role::Sign));
}
#[test]
fn test_gen_priv() {
let mut k0 = super::PKey::new();
let mut k1 = super::PKey::new();
k0.gen(512);
k1.load_priv(&k0.save_priv());
assert_eq!(k0.save_priv(), k1.save_priv());
assert_eq!(k0.size(), k1.size());
assert!(k0.can(super::Role::Encrypt));
assert!(k0.can(super::Role::Decrypt));
assert!(k0.can(super::Role::Verify));
assert!(k0.can(super::Role::Sign));
assert!(k1.can(super::Role::Encrypt));
assert!(k1.can(super::Role::Decrypt));
assert!(k1.can(super::Role::Verify));
assert!(k1.can(super::Role::Sign));
}
#[test]
fn test_encrypt() {
let mut k0 = super::PKey::new();
let mut k1 = super::PKey::new();
let msg = vec!(0xdeu8, 0xadu8, 0xd0u8, 0x0du8);
k0.gen(512);
k1.load_pub(&k0.save_pub());
let emsg = k1.encrypt(&msg);
let dmsg = k0.decrypt(&emsg);
assert!(msg == dmsg);
}
#[test]
fn test_encrypt_pkcs() {
let mut k0 = super::PKey::new();
let mut k1 = super::PKey::new();
let msg = vec!(0xdeu8, 0xadu8, 0xd0u8, 0x0du8);
k0.gen(512);
k1.load_pub(&k0.save_pub());
let emsg = k1.encrypt_with_padding(&msg, super::EncryptionPadding::PKCS1v15);
let dmsg = k0.decrypt_with_padding(&emsg, super::EncryptionPadding::PKCS1v15);
assert!(msg == dmsg);
}
#[test]
fn test_sign() {
let mut k0 = super::PKey::new();
let mut k1 = super::PKey::new();
let msg = vec!(0xdeu8, 0xadu8, 0xd0u8, 0x0du8);
k0.gen(512);
k1.load_pub(&k0.save_pub());
let sig = k0.sign(&msg);
let rv = k1.verify(&msg, &sig);
assert!(rv == true);
}
#[test]
fn test_sign_hashes() {
let mut k0 = super::PKey::new();
let mut k1 = super::PKey::new();
let msg = vec!(0xdeu8, 0xadu8, 0xd0u8, 0x0du8);
k0.gen(512);
k1.load_pub(&k0.save_pub());
let sig = k0.sign_with_hash(&msg, MD5);
assert!(k1.verify_with_hash(&msg, &sig, MD5));
assert!(!k1.verify_with_hash(&msg, &sig, SHA1));
}
}