boring2/openssl/src/crypto/dsa.rs

339 lines
10 KiB
Rust

use ffi;
use std::fmt;
use error::ErrorStack;
use std::ptr;
use libc::{c_uint, c_int, c_char, c_void};
use bn::BigNumRef;
use bio::{MemBio, MemBioSlice};
use crypto::hash;
use HashTypeInternals;
use crypto::util::{CallbackState, invoke_passwd_cb};
/// Builder for upfront DSA parameter generateration
pub struct DSAParams(*mut ffi::DSA);
impl DSAParams {
pub fn with_size(size: u32) -> Result<DSAParams, ErrorStack> {
unsafe {
// Wrap it so that if we panic we'll call the dtor
let dsa = DSAParams(try_ssl_null!(ffi::DSA_new()));
try_ssl!(ffi::DSA_generate_parameters_ex(dsa.0, size as c_int, ptr::null(), 0,
ptr::null_mut(), ptr::null_mut(), ptr::null()));
Ok(dsa)
}
}
/// Generate a key pair from the initialized parameters
pub fn generate(self) -> Result<DSA, ErrorStack> {
unsafe {
try_ssl!(ffi::DSA_generate_key(self.0));
let dsa = DSA(self.0);
::std::mem::forget(self);
Ok(dsa)
}
}
}
impl Drop for DSAParams {
fn drop(&mut self) {
unsafe {
ffi::DSA_free(self.0);
}
}
}
pub struct DSA(*mut ffi::DSA);
impl Drop for DSA {
fn drop(&mut self) {
unsafe {
ffi::DSA_free(self.0);
}
}
}
impl DSA {
pub unsafe fn from_ptr(dsa: *mut ffi::DSA) -> DSA {
DSA(dsa)
}
/// Generate a DSA key pair
/// For more complicated key generation scenarios see the `DSAParams` type
pub fn generate(size: u32) -> Result<DSA, ErrorStack> {
let params = try!(DSAParams::with_size(size));
params.generate()
}
/// Reads a DSA private key from PEM formatted data.
pub fn private_key_from_pem(buf: &[u8]) -> Result<DSA, ErrorStack> {
ffi::init();
let mem_bio = try!(MemBioSlice::new(buf));
unsafe {
let dsa = try_ssl_null!(ffi::PEM_read_bio_DSAPrivateKey(mem_bio.as_ptr(),
ptr::null_mut(),
None,
ptr::null_mut()));
let dsa = DSA(dsa);
assert!(dsa.has_private_key());
Ok(dsa)
}
}
/// Read a private key from PEM supplying a password callback to be invoked if the private key
/// is encrypted.
///
/// The callback will be passed the password buffer and should return the number of characters
/// placed into the buffer.
pub fn private_key_from_pem_cb<F>(buf: &[u8], pass_cb: F) -> Result<DSA, ErrorStack>
where F: FnOnce(&mut [c_char]) -> usize
{
ffi::init();
let mut cb = CallbackState::new(pass_cb);
let mem_bio = try!(MemBioSlice::new(buf));
unsafe {
let cb_ptr = &mut cb as *mut _ as *mut c_void;
let dsa = try_ssl_null!(ffi::PEM_read_bio_DSAPrivateKey(mem_bio.as_ptr(),
ptr::null_mut(),
Some(invoke_passwd_cb::<F>),
cb_ptr));
let dsa = DSA(dsa);
assert!(dsa.has_private_key());
Ok(dsa)
}
}
/// Writes an DSA private key as unencrypted PEM formatted data
pub fn private_key_to_pem(&self) -> Result<Vec<u8>, ErrorStack>
{
assert!(self.has_private_key());
let mem_bio = try!(MemBio::new());
unsafe {
try_ssl!(ffi::PEM_write_bio_DSAPrivateKey(mem_bio.as_ptr(), self.0,
ptr::null(), ptr::null_mut(), 0,
None, ptr::null_mut()))
};
Ok(mem_bio.get_buf().to_owned())
}
/// Reads an DSA public key from PEM formatted data.
pub fn public_key_from_pem(buf: &[u8]) -> Result<DSA, ErrorStack>
{
ffi::init();
let mem_bio = try!(MemBioSlice::new(buf));
unsafe {
let dsa = try_ssl_null!(ffi::PEM_read_bio_DSA_PUBKEY(mem_bio.as_ptr(),
ptr::null_mut(),
None,
ptr::null_mut()));
Ok(DSA(dsa))
}
}
/// Writes an DSA public key as PEM formatted data
pub fn public_key_to_pem(&self) -> Result<Vec<u8>, ErrorStack> {
let mem_bio = try!(MemBio::new());
unsafe { try_ssl!(ffi::PEM_write_bio_DSA_PUBKEY(mem_bio.as_ptr(), self.0)) };
Ok(mem_bio.get_buf().to_owned())
}
pub fn size(&self) -> Option<u32> {
if self.q().is_some() {
unsafe { Some(ffi::DSA_size(self.0) as u32) }
} else {
None
}
}
pub fn sign(&self, hash: hash::Type, message: &[u8]) -> Result<Vec<u8>, ErrorStack> {
let k_len = self.size().expect("DSA missing a q") as c_uint;
let mut sig = vec![0; k_len as usize];
let mut sig_len = k_len;
assert!(self.has_private_key());
unsafe {
try_ssl!(ffi::DSA_sign(hash.as_nid() as c_int,
message.as_ptr(),
message.len() as c_int,
sig.as_mut_ptr(),
&mut sig_len,
self.0));
sig.set_len(sig_len as usize);
sig.shrink_to_fit();
Ok(sig)
}
}
pub fn verify(&self, hash: hash::Type, message: &[u8], sig: &[u8]) -> Result<bool, ErrorStack> {
unsafe {
let result = ffi::DSA_verify(hash.as_nid() as c_int,
message.as_ptr(),
message.len() as c_int,
sig.as_ptr(),
sig.len() as c_int,
self.0);
try_ssl_if!(result == -1);
Ok(result == 1)
}
}
pub fn as_ptr(&self) -> *mut ffi::DSA {
self.0
}
pub fn p<'a>(&'a self) -> Option<BigNumRef<'a>> {
unsafe {
let p = (*self.0).p;
if p.is_null() {
None
} else {
Some(BigNumRef::from_ptr((*self.0).p))
}
}
}
pub fn q<'a>(&'a self) -> Option<BigNumRef<'a>> {
unsafe {
let q = (*self.0).q;
if q.is_null() {
None
} else {
Some(BigNumRef::from_ptr((*self.0).q))
}
}
}
pub fn g<'a>(&'a self) -> Option<BigNumRef<'a>> {
unsafe {
let g = (*self.0).g;
if g.is_null() {
None
} else {
Some(BigNumRef::from_ptr((*self.0).g))
}
}
}
pub fn has_public_key(&self) -> bool {
unsafe { !(*self.0).pub_key.is_null() }
}
pub fn has_private_key(&self) -> bool {
unsafe { !(*self.0).priv_key.is_null() }
}
}
impl fmt::Debug for DSA {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "DSA")
}
}
#[cfg(test)]
mod test {
use std::io::Write;
use libc::c_char;
use super::*;
use crypto::hash::*;
#[test]
pub fn test_generate() {
let key = DSA::generate(1024).unwrap();
key.public_key_to_pem().unwrap();
key.private_key_to_pem().unwrap();
let input: Vec<u8> = (0..25).cycle().take(1024).collect();
let digest = {
let mut sha = Hasher::new(Type::SHA1).unwrap();
sha.write_all(&input).unwrap();
sha.finish().unwrap()
};
let sig = key.sign(Type::SHA1, &digest).unwrap();
let verified = key.verify(Type::SHA1, &digest, &sig).unwrap();
assert!(verified);
}
#[test]
pub fn test_sign_verify() {
let input: Vec<u8> = (0..25).cycle().take(1024).collect();
let private_key = {
let key = include_bytes!("../../test/dsa.pem");
DSA::private_key_from_pem(key).unwrap()
};
let public_key = {
let key = include_bytes!("../../test/dsa.pem.pub");
DSA::public_key_from_pem(key).unwrap()
};
let digest = {
let mut sha = Hasher::new(Type::SHA1).unwrap();
sha.write_all(&input).unwrap();
sha.finish().unwrap()
};
let sig = private_key.sign(Type::SHA1, &digest).unwrap();
let verified = public_key.verify(Type::SHA1, &digest, &sig).unwrap();
assert!(verified);
}
#[test]
pub fn test_sign_verify_fail() {
let input: Vec<u8> = (0..25).cycle().take(128).collect();
let private_key = {
let key = include_bytes!("../../test/dsa.pem");
DSA::private_key_from_pem(key).unwrap()
};
let public_key = {
let key = include_bytes!("../../test/dsa.pem.pub");
DSA::public_key_from_pem(key).unwrap()
};
let digest = {
let mut sha = Hasher::new(Type::SHA1).unwrap();
sha.write_all(&input).unwrap();
sha.finish().unwrap()
};
let mut sig = private_key.sign(Type::SHA1, &digest).unwrap();
// tamper with the sig this should cause a failure
let len = sig.len();
sig[len / 2] = 0;
sig[len - 1] = 0;
if let Ok(true) = public_key.verify(Type::SHA1, &digest, &sig) {
panic!("Tampered with signatures should not verify!");
}
}
#[test]
pub fn test_password() {
let mut password_queried = false;
let key = include_bytes!("../../test/dsa-encrypted.pem");
DSA::private_key_from_pem_cb(key, |password| {
password_queried = true;
password[0] = b'm' as c_char;
password[1] = b'y' as c_char;
password[2] = b'p' as c_char;
password[3] = b'a' as c_char;
password[4] = b's' as c_char;
password[5] = b's' as c_char;
6
}).unwrap();
assert!(password_queried);
}
}