boring2/boring/src/rsa.rs

783 lines
24 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//! RivestShamirAdleman cryptosystem
//!
//! RSA is one of the earliest asymmetric public key encryption schemes.
//! Like many other cryptosystems, RSA relies on the presumed difficulty of a hard
//! mathematical problem, namely factorization of the product of two large prime
//! numbers. At the moment there does not exist an algorithm that can factor such
//! large numbers in reasonable time. RSA is used in a wide variety of
//! applications including digital signatures and key exchanges such as
//! establishing a TLS/SSL connection.
//!
//! The RSA acronym is derived from the first letters of the surnames of the
//! algorithm's founding trio.
//!
//! # Example
//!
//! Generate a 2048-bit RSA key pair and use the public key to encrypt some data.
//!
//! ```rust
//! use boring::rsa::{Rsa, Padding};
//!
//! let rsa = Rsa::generate(2048).unwrap();
//! let data = b"foobar";
//! let mut buf = vec![0; rsa.size() as usize];
//! let encrypted_len = rsa.public_encrypt(data, &mut buf, Padding::PKCS1).unwrap();
//! ```
use crate::ffi;
use foreign_types::{ForeignType, ForeignTypeRef};
use libc::c_int;
use openssl_macros::corresponds;
use std::fmt;
use std::mem;
use std::ptr;
use crate::bn::{BigNum, BigNumRef};
use crate::error::ErrorStack;
use crate::pkey::{HasPrivate, HasPublic, Private, Public};
use crate::{cvt, cvt_n, cvt_p};
pub const EVP_PKEY_OP_SIGN: c_int = 1 << 3;
pub const EVP_PKEY_OP_VERIFY: c_int = 1 << 4;
pub const EVP_PKEY_OP_VERIFYRECOVER: c_int = 1 << 5;
pub const EVP_PKEY_OP_SIGNCTX: c_int = 1 << 6;
pub const EVP_PKEY_OP_VERIFYCTX: c_int = 1 << 7;
pub const EVP_PKEY_OP_ENCRYPT: c_int = 1 << 8;
pub const EVP_PKEY_OP_DECRYPT: c_int = 1 << 9;
pub const EVP_PKEY_OP_TYPE_SIG: c_int = EVP_PKEY_OP_SIGN
| EVP_PKEY_OP_VERIFY
| EVP_PKEY_OP_VERIFYRECOVER
| EVP_PKEY_OP_SIGNCTX
| EVP_PKEY_OP_VERIFYCTX;
pub const EVP_PKEY_OP_TYPE_CRYPT: c_int = EVP_PKEY_OP_ENCRYPT | EVP_PKEY_OP_DECRYPT;
/// Type of encryption padding to use.
///
/// Random length padding is primarily used to prevent attackers from
/// predicting or knowing the exact length of a plaintext message that
/// can possibly lead to breaking encryption.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub struct Padding(c_int);
impl Padding {
pub const NONE: Padding = Padding(ffi::RSA_NO_PADDING);
pub const PKCS1: Padding = Padding(ffi::RSA_PKCS1_PADDING);
pub const PKCS1_OAEP: Padding = Padding(ffi::RSA_PKCS1_OAEP_PADDING);
pub const PKCS1_PSS: Padding = Padding(ffi::RSA_PKCS1_PSS_PADDING);
/// Creates a `Padding` from an integer representation.
pub fn from_raw(value: c_int) -> Padding {
Padding(value)
}
/// Returns the integer representation of `Padding`.
#[allow(clippy::trivially_copy_pass_by_ref)]
pub fn as_raw(&self) -> c_int {
self.0
}
}
generic_foreign_type_and_impl_send_sync! {
type CType = ffi::RSA;
fn drop = ffi::RSA_free;
/// An RSA key.
pub struct Rsa<T>;
/// Reference to `RSA`
pub struct RsaRef<T>;
}
impl<T> Clone for Rsa<T> {
fn clone(&self) -> Rsa<T> {
(**self).to_owned()
}
}
impl<T> ToOwned for RsaRef<T> {
type Owned = Rsa<T>;
fn to_owned(&self) -> Rsa<T> {
unsafe {
ffi::RSA_up_ref(self.as_ptr());
Rsa::from_ptr(self.as_ptr())
}
}
}
impl<T> RsaRef<T>
where
T: HasPrivate,
{
private_key_to_pem! {
/// Serializes the private key to a PEM-encoded PKCS#1 RSAPrivateKey structure.
///
/// The output will have a header of `-----BEGIN RSA PRIVATE KEY-----`.
#[corresponds(PEM_write_bio_RSAPrivateKey)]
private_key_to_pem,
/// Serializes the private key to a PEM-encoded encrypted PKCS#1 RSAPrivateKey structure.
///
/// The output will have a header of `-----BEGIN RSA PRIVATE KEY-----`.
#[corresponds(PEM_write_bio_RSAPrivateKey)]
private_key_to_pem_passphrase,
ffi::PEM_write_bio_RSAPrivateKey
}
to_der! {
/// Serializes the private key to a DER-encoded PKCS#1 RSAPrivateKey structure.
#[corresponds(i2d_RSAPrivateKey)]
private_key_to_der,
ffi::i2d_RSAPrivateKey
}
/// Decrypts data using the private key, returning the number of decrypted bytes.
///
/// # Panics
///
/// Panics if `self` has no private components, or if `to` is smaller
/// than `self.size()`.
pub fn private_decrypt(
&self,
from: &[u8],
to: &mut [u8],
padding: Padding,
) -> Result<usize, ErrorStack> {
assert!(from.len() <= i32::MAX as usize);
assert!(to.len() >= self.size() as usize);
unsafe {
let len = cvt_n(ffi::RSA_private_decrypt(
from.len(),
from.as_ptr(),
to.as_mut_ptr(),
self.as_ptr(),
padding.0,
))?;
Ok(len as usize)
}
}
/// Encrypts data using the private key, returning the number of encrypted bytes.
///
/// # Panics
///
/// Panics if `self` has no private components, or if `to` is smaller
/// than `self.size()`.
pub fn private_encrypt(
&self,
from: &[u8],
to: &mut [u8],
padding: Padding,
) -> Result<usize, ErrorStack> {
assert!(from.len() <= i32::MAX as usize);
assert!(to.len() >= self.size() as usize);
unsafe {
let len = cvt_n(ffi::RSA_private_encrypt(
from.len(),
from.as_ptr(),
to.as_mut_ptr(),
self.as_ptr(),
padding.0,
))?;
Ok(len as usize)
}
}
/// Returns a reference to the private exponent of the key.
#[corresponds(RSA_get0_key)]
pub fn d(&self) -> &BigNumRef {
unsafe {
let mut d = ptr::null();
RSA_get0_key(self.as_ptr(), ptr::null_mut(), ptr::null_mut(), &mut d);
BigNumRef::from_ptr(d as *mut _)
}
}
/// Returns a reference to the first factor of the exponent of the key.
#[corresponds(RSA_get0_factors)]
pub fn p(&self) -> Option<&BigNumRef> {
unsafe {
let mut p = ptr::null();
RSA_get0_factors(self.as_ptr(), &mut p, ptr::null_mut());
if p.is_null() {
None
} else {
Some(BigNumRef::from_ptr(p as *mut _))
}
}
}
/// Returns a reference to the second factor of the exponent of the key.
#[corresponds(RSA_get0_factors)]
pub fn q(&self) -> Option<&BigNumRef> {
unsafe {
let mut q = ptr::null();
RSA_get0_factors(self.as_ptr(), ptr::null_mut(), &mut q);
if q.is_null() {
None
} else {
Some(BigNumRef::from_ptr(q as *mut _))
}
}
}
/// Returns a reference to the first exponent used for CRT calculations.
#[corresponds(RSA_get0_crt_params)]
pub fn dmp1(&self) -> Option<&BigNumRef> {
unsafe {
let mut dp = ptr::null();
RSA_get0_crt_params(self.as_ptr(), &mut dp, ptr::null_mut(), ptr::null_mut());
if dp.is_null() {
None
} else {
Some(BigNumRef::from_ptr(dp as *mut _))
}
}
}
/// Returns a reference to the second exponent used for CRT calculations.
#[corresponds(RSA_get0_crt_params)]
pub fn dmq1(&self) -> Option<&BigNumRef> {
unsafe {
let mut dq = ptr::null();
RSA_get0_crt_params(self.as_ptr(), ptr::null_mut(), &mut dq, ptr::null_mut());
if dq.is_null() {
None
} else {
Some(BigNumRef::from_ptr(dq as *mut _))
}
}
}
/// Returns a reference to the coefficient used for CRT calculations.
#[corresponds(RSA_get0_crt_params)]
pub fn iqmp(&self) -> Option<&BigNumRef> {
unsafe {
let mut qi = ptr::null();
RSA_get0_crt_params(self.as_ptr(), ptr::null_mut(), ptr::null_mut(), &mut qi);
if qi.is_null() {
None
} else {
Some(BigNumRef::from_ptr(qi as *mut _))
}
}
}
/// Validates RSA parameters for correctness
#[corresponds(RSA_check_key)]
#[allow(clippy::unnecessary_cast)]
pub fn check_key(&self) -> Result<bool, ErrorStack> {
unsafe {
let result = ffi::RSA_check_key(self.as_ptr()) as i32;
if result == -1 {
Err(ErrorStack::get())
} else {
Ok(result == 1)
}
}
}
}
impl<T> RsaRef<T>
where
T: HasPublic,
{
to_pem! {
/// Serializes the public key into a PEM-encoded SubjectPublicKeyInfo structure.
///
/// The output will have a header of `-----BEGIN PUBLIC KEY-----`.
#[corresponds(PEM_write_bio_RSA_PUBKEY)]
public_key_to_pem,
ffi::PEM_write_bio_RSA_PUBKEY
}
to_der! {
/// Serializes the public key into a DER-encoded SubjectPublicKeyInfo structure.
#[corresponds(i2d_RSA_PUBKEY)]
public_key_to_der,
ffi::i2d_RSA_PUBKEY
}
to_pem! {
/// Serializes the public key into a PEM-encoded PKCS#1 RSAPublicKey structure.
///
/// The output will have a header of `-----BEGIN RSA PUBLIC KEY-----`.
#[corresponds(PEM_write_bio_RSAPublicKey)]
public_key_to_pem_pkcs1,
ffi::PEM_write_bio_RSAPublicKey
}
to_der! {
/// Serializes the public key into a DER-encoded PKCS#1 RSAPublicKey structure.
#[corresponds(i2d_RSAPublicKey)]
public_key_to_der_pkcs1,
ffi::i2d_RSAPublicKey
}
/// Returns the size of the modulus in bytes.
#[corresponds(RSA_size)]
#[allow(clippy::unnecessary_cast)]
pub fn size(&self) -> u32 {
unsafe { ffi::RSA_size(self.as_ptr()) as u32 }
}
/// Decrypts data using the public key, returning the number of decrypted bytes.
///
/// # Panics
///
/// Panics if `to` is smaller than `self.size()`.
pub fn public_decrypt(
&self,
from: &[u8],
to: &mut [u8],
padding: Padding,
) -> Result<usize, ErrorStack> {
assert!(from.len() <= i32::MAX as usize);
assert!(to.len() >= self.size() as usize);
unsafe {
let len = cvt_n(ffi::RSA_public_decrypt(
from.len(),
from.as_ptr(),
to.as_mut_ptr(),
self.as_ptr(),
padding.0,
))?;
Ok(len as usize)
}
}
/// Encrypts data using the public key, returning the number of encrypted bytes.
///
/// # Panics
///
/// Panics if `to` is smaller than `self.size()`.
pub fn public_encrypt(
&self,
from: &[u8],
to: &mut [u8],
padding: Padding,
) -> Result<usize, ErrorStack> {
assert!(from.len() <= i32::MAX as usize);
assert!(to.len() >= self.size() as usize);
unsafe {
let len = cvt_n(ffi::RSA_public_encrypt(
from.len(),
from.as_ptr(),
to.as_mut_ptr(),
self.as_ptr(),
padding.0,
))?;
Ok(len as usize)
}
}
/// Returns a reference to the modulus of the key.
#[corresponds(RSA_get0_key)]
pub fn n(&self) -> &BigNumRef {
unsafe {
let mut n = ptr::null();
RSA_get0_key(self.as_ptr(), &mut n, ptr::null_mut(), ptr::null_mut());
BigNumRef::from_ptr(n as *mut _)
}
}
/// Returns a reference to the public exponent of the key.
#[corresponds(RSA_get0_key)]
pub fn e(&self) -> &BigNumRef {
unsafe {
let mut e = ptr::null();
RSA_get0_key(self.as_ptr(), ptr::null_mut(), &mut e, ptr::null_mut());
BigNumRef::from_ptr(e as *mut _)
}
}
}
impl Rsa<Public> {
/// Creates a new RSA key with only public components.
///
/// `n` is the modulus common to both public and private key.
/// `e` is the public exponent.
#[corresponds(RSA_new)]
/// [`RSA_set0_key`]: https://www.openssl.org/docs/man1.1.0/crypto/RSA_set0_key.html
pub fn from_public_components(n: BigNum, e: BigNum) -> Result<Rsa<Public>, ErrorStack> {
unsafe {
let rsa = cvt_p(ffi::RSA_new())?;
RSA_set0_key(rsa, n.as_ptr(), e.as_ptr(), ptr::null_mut());
mem::forget((n, e));
Ok(Rsa::from_ptr(rsa))
}
}
from_pem! {
/// Decodes a PEM-encoded SubjectPublicKeyInfo structure containing an RSA key.
///
/// The input should have a header of `-----BEGIN PUBLIC KEY-----`.
#[corresponds(PEM_read_bio_RSA_PUBKEY)]
public_key_from_pem,
Rsa<Public>,
ffi::PEM_read_bio_RSA_PUBKEY
}
from_pem! {
/// Decodes a PEM-encoded PKCS#1 RSAPublicKey structure.
///
/// The input should have a header of `-----BEGIN RSA PUBLIC KEY-----`.
#[corresponds(PEM_read_bio_RSAPublicKey)]
public_key_from_pem_pkcs1,
Rsa<Public>,
ffi::PEM_read_bio_RSAPublicKey
}
from_der! {
/// Decodes a DER-encoded SubjectPublicKeyInfo structure containing an RSA key.
#[corresponds(d2i_RSA_PUBKEY)]
public_key_from_der,
Rsa<Public>,
ffi::d2i_RSA_PUBKEY,
::libc::c_long
}
from_der! {
/// Decodes a DER-encoded PKCS#1 RSAPublicKey structure.
#[corresponds(d2i_RSAPublicKey)]
public_key_from_der_pkcs1,
Rsa<Public>,
ffi::d2i_RSAPublicKey,
::libc::c_long
}
}
pub struct RsaPrivateKeyBuilder {
rsa: Rsa<Private>,
}
impl RsaPrivateKeyBuilder {
/// Creates a new `RsaPrivateKeyBuilder`.
///
/// `n` is the modulus common to both public and private key.
/// `e` is the public exponent and `d` is the private exponent.
#[corresponds(RSA_new)]
/// [`RSA_set0_key`]: https://www.openssl.org/docs/man1.1.0/crypto/RSA_set0_key.html
pub fn new(n: BigNum, e: BigNum, d: BigNum) -> Result<RsaPrivateKeyBuilder, ErrorStack> {
unsafe {
let rsa = cvt_p(ffi::RSA_new())?;
RSA_set0_key(rsa, n.as_ptr(), e.as_ptr(), d.as_ptr());
mem::forget((n, e, d));
Ok(RsaPrivateKeyBuilder {
rsa: Rsa::from_ptr(rsa),
})
}
}
/// Sets the factors of the Rsa key.
///
/// `p` and `q` are the first and second factors of `n`.
///
// FIXME should be infallible
#[corresponds(RSA_set0_factors)]
pub fn set_factors(self, p: BigNum, q: BigNum) -> Result<RsaPrivateKeyBuilder, ErrorStack> {
unsafe {
RSA_set0_factors(self.rsa.as_ptr(), p.as_ptr(), q.as_ptr());
mem::forget((p, q));
}
Ok(self)
}
/// Sets the Chinese Remainder Theorem params of the Rsa key.
///
/// `dmp1`, `dmq1`, and `iqmp` are the exponents and coefficient for
/// CRT calculations which is used to speed up RSA operations.
///
// FIXME should be infallible
#[corresponds(RSA_set0_crt_params)]
pub fn set_crt_params(
self,
dmp1: BigNum,
dmq1: BigNum,
iqmp: BigNum,
) -> Result<RsaPrivateKeyBuilder, ErrorStack> {
unsafe {
RSA_set0_crt_params(
self.rsa.as_ptr(),
dmp1.as_ptr(),
dmq1.as_ptr(),
iqmp.as_ptr(),
);
mem::forget((dmp1, dmq1, iqmp));
}
Ok(self)
}
/// Returns the Rsa key.
pub fn build(self) -> Rsa<Private> {
self.rsa
}
}
impl Rsa<Private> {
/// Creates a new RSA key with private components (public components are assumed).
///
/// This a convenience method over
/// `Rsa::build(n, e, d)?.set_factors(p, q)?.set_crt_params(dmp1, dmq1, iqmp)?.build()`
#[allow(clippy::too_many_arguments, clippy::many_single_char_names)]
pub fn from_private_components(
n: BigNum,
e: BigNum,
d: BigNum,
p: BigNum,
q: BigNum,
dmp1: BigNum,
dmq1: BigNum,
iqmp: BigNum,
) -> Result<Rsa<Private>, ErrorStack> {
Ok(RsaPrivateKeyBuilder::new(n, e, d)?
.set_factors(p, q)?
.set_crt_params(dmp1, dmq1, iqmp)?
.build())
}
/// Generates a public/private key pair with the specified size.
///
/// The public exponent will be 65537.
#[corresponds(RSA_generate_key_ex)]
pub fn generate(bits: u32) -> Result<Rsa<Private>, ErrorStack> {
let e = BigNum::from_u32(ffi::RSA_F4 as u32)?;
Rsa::generate_with_e(bits, &e)
}
/// Generates a public/private key pair with the specified size and a custom exponent.
///
/// Unless you have specific needs and know what you're doing, use `Rsa::generate` instead.
#[corresponds(RSA_generate_key_ex)]
pub fn generate_with_e(bits: u32, e: &BigNumRef) -> Result<Rsa<Private>, ErrorStack> {
unsafe {
let rsa = Rsa::from_ptr(cvt_p(ffi::RSA_new())?);
cvt(ffi::RSA_generate_key_ex(
rsa.0,
bits as c_int,
e.as_ptr(),
ptr::null_mut(),
))?;
Ok(rsa)
}
}
// FIXME these need to identify input formats
private_key_from_pem! {
/// Deserializes a private key from a PEM-encoded PKCS#1 RSAPrivateKey structure.
#[corresponds(PEM_read_bio_RSAPrivateKey)]
private_key_from_pem,
/// Deserializes a private key from a PEM-encoded encrypted PKCS#1 RSAPrivateKey structure.
#[corresponds(PEM_read_bio_RSAPrivateKey)]
private_key_from_pem_passphrase,
/// Deserializes a private key from a PEM-encoded encrypted PKCS#1 RSAPrivateKey structure.
///
/// The callback should fill the password into the provided buffer and return its length.
#[corresponds(PEM_read_bio_RSAPrivateKey)]
private_key_from_pem_callback,
Rsa<Private>,
ffi::PEM_read_bio_RSAPrivateKey
}
from_der! {
/// Decodes a DER-encoded PKCS#1 RSAPrivateKey structure.
#[corresponds(d2i_RSAPrivateKey)]
private_key_from_der,
Rsa<Private>,
ffi::d2i_RSAPrivateKey,
::libc::c_long
}
}
impl<T> fmt::Debug for Rsa<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Rsa")
}
}
use crate::ffi::{
RSA_get0_crt_params, RSA_get0_factors, RSA_get0_key, RSA_set0_crt_params, RSA_set0_factors,
RSA_set0_key,
};
#[cfg(test)]
mod test {
use crate::symm::Cipher;
use super::*;
#[test]
fn test_from_password() {
let key = include_bytes!("../test/rsa-encrypted.pem");
Rsa::private_key_from_pem_passphrase(key, b"mypass").unwrap();
}
#[test]
fn test_from_password_callback() {
let mut password_queried = false;
let key = include_bytes!("../test/rsa-encrypted.pem");
Rsa::private_key_from_pem_callback(key, |password| {
password_queried = true;
password[..6].copy_from_slice(b"mypass");
Ok(6)
})
.unwrap();
assert!(password_queried);
}
#[test]
fn test_to_password() {
let key = Rsa::generate(2048).unwrap();
let pem = key
.private_key_to_pem_passphrase(Cipher::aes_128_cbc(), b"foobar")
.unwrap();
Rsa::private_key_from_pem_passphrase(&pem, b"foobar").unwrap();
assert!(Rsa::private_key_from_pem_passphrase(&pem, b"fizzbuzz").is_err());
}
#[test]
fn test_public_encrypt_private_decrypt_with_padding() {
let key = include_bytes!("../test/rsa.pem.pub");
let public_key = Rsa::public_key_from_pem(key).unwrap();
let mut result = vec![0; public_key.size() as usize];
let original_data = b"This is test";
let len = public_key
.public_encrypt(original_data, &mut result, Padding::PKCS1)
.unwrap();
assert_eq!(len, 256);
let pkey = include_bytes!("../test/rsa.pem");
let private_key = Rsa::private_key_from_pem(pkey).unwrap();
let mut dec_result = vec![0; private_key.size() as usize];
let len = private_key
.private_decrypt(&result, &mut dec_result, Padding::PKCS1)
.unwrap();
assert_eq!(&dec_result[..len], original_data);
}
#[test]
fn test_private_encrypt() {
let k0 = super::Rsa::generate(512).unwrap();
let k0pkey = k0.public_key_to_pem().unwrap();
let k1 = super::Rsa::public_key_from_pem(&k0pkey).unwrap();
let msg = vec![0xdeu8, 0xadu8, 0xd0u8, 0x0du8];
let mut emesg = vec![0; k0.size() as usize];
k0.private_encrypt(&msg, &mut emesg, Padding::PKCS1)
.unwrap();
let mut dmesg = vec![0; k1.size() as usize];
let len = k1
.public_decrypt(&emesg, &mut dmesg, Padding::PKCS1)
.unwrap();
assert_eq!(msg, &dmesg[..len]);
}
#[test]
fn test_public_encrypt() {
let k0 = super::Rsa::generate(512).unwrap();
let k0pkey = k0.private_key_to_pem().unwrap();
let k1 = super::Rsa::private_key_from_pem(&k0pkey).unwrap();
let msg = vec![0xdeu8, 0xadu8, 0xd0u8, 0x0du8];
let mut emesg = vec![0; k0.size() as usize];
k0.public_encrypt(&msg, &mut emesg, Padding::PKCS1).unwrap();
let mut dmesg = vec![0; k1.size() as usize];
let len = k1
.private_decrypt(&emesg, &mut dmesg, Padding::PKCS1)
.unwrap();
assert_eq!(msg, &dmesg[..len]);
}
#[test]
fn test_public_key_from_pem_pkcs1() {
let key = include_bytes!("../test/pkcs1.pem.pub");
Rsa::public_key_from_pem_pkcs1(key).unwrap();
}
#[test]
#[should_panic]
fn test_public_key_from_pem_pkcs1_file_panic() {
let key = include_bytes!("../test/key.pem.pub");
Rsa::public_key_from_pem_pkcs1(key).unwrap();
}
#[test]
fn test_public_key_to_pem_pkcs1() {
let keypair = super::Rsa::generate(512).unwrap();
let pubkey_pem = keypair.public_key_to_pem_pkcs1().unwrap();
super::Rsa::public_key_from_pem_pkcs1(&pubkey_pem).unwrap();
}
#[test]
#[should_panic]
fn test_public_key_from_pem_pkcs1_generate_panic() {
let keypair = super::Rsa::generate(512).unwrap();
let pubkey_pem = keypair.public_key_to_pem().unwrap();
super::Rsa::public_key_from_pem_pkcs1(&pubkey_pem).unwrap();
}
#[test]
fn test_pem_pkcs1_encrypt() {
let keypair = super::Rsa::generate(2048).unwrap();
let pubkey_pem = keypair.public_key_to_pem_pkcs1().unwrap();
let pubkey = super::Rsa::public_key_from_pem_pkcs1(&pubkey_pem).unwrap();
let msg = b"Hello, world!";
let mut encrypted = vec![0; pubkey.size() as usize];
let len = pubkey
.public_encrypt(msg, &mut encrypted, Padding::PKCS1)
.unwrap();
assert!(len > msg.len());
let mut decrypted = vec![0; keypair.size() as usize];
let len = keypair
.private_decrypt(&encrypted, &mut decrypted, Padding::PKCS1)
.unwrap();
assert_eq!(len, msg.len());
assert_eq!(&decrypted[..len], msg);
}
#[test]
fn test_pem_pkcs1_padding() {
let keypair = super::Rsa::generate(2048).unwrap();
let pubkey_pem = keypair.public_key_to_pem_pkcs1().unwrap();
let pubkey = super::Rsa::public_key_from_pem_pkcs1(&pubkey_pem).unwrap();
let msg = b"foo";
let mut encrypted1 = vec![0; pubkey.size() as usize];
let mut encrypted2 = vec![0; pubkey.size() as usize];
let len1 = pubkey
.public_encrypt(msg, &mut encrypted1, Padding::PKCS1)
.unwrap();
let len2 = pubkey
.public_encrypt(msg, &mut encrypted2, Padding::PKCS1)
.unwrap();
assert!(len1 > (msg.len() + 1));
assert_eq!(len1, len2);
assert_ne!(encrypted1, encrypted2);
}
#[test]
#[allow(clippy::redundant_clone)]
fn clone() {
let key = Rsa::generate(2048).unwrap();
drop(key.clone());
}
#[test]
fn generate_with_e() {
let e = BigNum::from_u32(0x10001).unwrap();
Rsa::generate_with_e(2048, &e).unwrap();
}
}