use libc::{c_int, c_ulong, c_void}; use std::ffi::{CStr, CString}; use std::cmp::Ordering; use std::{fmt, ptr, mem}; use ffi; use ssl::error::SslError; /// A signed arbitrary-precision integer. /// /// `BigNum` provides wrappers around OpenSSL's checked arithmetic functions. Additionally, it /// implements the standard operators (`std::ops`), which perform unchecked arithmetic, unwrapping /// the returned `Result` of the checked operations. pub struct BigNum(*mut ffi::BIGNUM); /// Specifies the desired properties of a randomly generated `BigNum`. #[derive(Copy, Clone)] #[repr(C)] pub enum RNGProperty { /// The most significant bit of the number is allowed to be 0. MsbMaybeZero = -1, /// The MSB should be set to 1. MsbOne = 0, /// The two most significant bits of the number will be set to 1, so that the product of two /// such random numbers will always have `2 * bits` length. TwoMsbOne = 1, } macro_rules! with_ctx( ($name:ident, $action:block) => ({ let $name = ffi::BN_CTX_new(); if ($name).is_null() { Err(SslError::get()) } else { let r = $action; ffi::BN_CTX_free($name); r } }); ); macro_rules! with_bn( ($name:ident, $action:block) => ({ let tmp = BigNum::new(); match tmp { Ok($name) => { if $action { Ok($name) } else { Err(SslError::get()) } }, Err(err) => Err(err), } }); ); macro_rules! with_bn_in_ctx( ($name:ident, $ctx_name:ident, $action:block) => ({ let tmp = BigNum::new(); match tmp { Ok($name) => { let $ctx_name = ffi::BN_CTX_new(); if ($ctx_name).is_null() { Err(SslError::get()) } else { let r = if $action { Ok($name) } else { Err(SslError::get()) }; ffi::BN_CTX_free($ctx_name); r } }, Err(err) => Err(err), } }); ); impl BigNum { /// Creates a new `BigNum` with the value 0. pub fn new() -> Result { unsafe { ffi::init(); let v = try_ssl_null!(ffi::BN_new()); Ok(BigNum(v)) } } /// Creates a new `BigNum` with the given value. pub fn new_from(n: u64) -> Result { BigNum::new().and_then(|v| unsafe { try_ssl!(ffi::BN_set_word(v.raw(), n as c_ulong)); Ok(v) }) } /// Creates a `BigNum` from a decimal string. pub fn from_dec_str(s: &str) -> Result { BigNum::new().and_then(|v| unsafe { let c_str = CString::new(s.as_bytes()).unwrap(); try_ssl!(ffi::BN_dec2bn(v.raw_ptr(), c_str.as_ptr() as *const _)); Ok(v) }) } /// Creates a `BigNum` from a hexadecimal string. pub fn from_hex_str(s: &str) -> Result { BigNum::new().and_then(|v| unsafe { let c_str = CString::new(s.as_bytes()).unwrap(); try_ssl!(ffi::BN_hex2bn(v.raw_ptr(), c_str.as_ptr() as *const _)); Ok(v) }) } pub unsafe fn new_from_ffi(orig: *mut ffi::BIGNUM) -> Result { if orig.is_null() { panic!("Null Pointer was supplied to BigNum::new_from_ffi"); } let r = ffi::BN_dup(orig); if r.is_null() { Err(SslError::get()) } else { Ok(BigNum(r)) } } /// Creates a new `BigNum` from an unsigned, big-endian encoded number of arbitrary length. /// /// ``` /// # use openssl::bn::BigNum; /// let bignum = BigNum::new_from_slice(&[0x12, 0x00, 0x34]).unwrap(); /// /// assert_eq!(bignum, BigNum::new_from(0x120034).unwrap()); /// ``` pub fn new_from_slice(n: &[u8]) -> Result { BigNum::new().and_then(|v| unsafe { try_ssl_null!(ffi::BN_bin2bn(n.as_ptr(), n.len() as c_int, v.raw())); Ok(v) }) } /// Returns the square of `self`. /// /// ``` /// # use openssl::bn::BigNum; /// let ref n = BigNum::new_from(10).unwrap(); /// let squared = BigNum::new_from(100).unwrap(); /// /// assert_eq!(n.checked_sqr().unwrap(), squared); /// assert_eq!(n * n, squared); /// ``` pub fn checked_sqr(&self) -> Result { unsafe { with_bn_in_ctx!(r, ctx, { ffi::BN_sqr(r.raw(), self.raw(), ctx) == 1 }) } } /// Returns the unsigned remainder of the division `self / n`. pub fn checked_nnmod(&self, n: &BigNum) -> Result { unsafe { with_bn_in_ctx!(r, ctx, { ffi::BN_nnmod(r.raw(), self.raw(), n.raw(), ctx) == 1 }) } } /// Equivalent to `(self + a) mod n`. /// /// ``` /// # use openssl::bn::BigNum; /// let ref s = BigNum::new_from(10).unwrap(); /// let ref a = BigNum::new_from(20).unwrap(); /// let ref n = BigNum::new_from(29).unwrap(); /// let result = BigNum::new_from(1).unwrap(); /// /// assert_eq!(s.checked_mod_add(a, n).unwrap(), result); /// ``` pub fn checked_mod_add(&self, a: &BigNum, n: &BigNum) -> Result { unsafe { with_bn_in_ctx!(r, ctx, { ffi::BN_mod_add(r.raw(), self.raw(), a.raw(), n.raw(), ctx) == 1 }) } } /// Equivalent to `(self - a) mod n`. pub fn checked_mod_sub(&self, a: &BigNum, n: &BigNum) -> Result { unsafe { with_bn_in_ctx!(r, ctx, { ffi::BN_mod_sub(r.raw(), self.raw(), a.raw(), n.raw(), ctx) == 1 }) } } /// Equivalent to `(self * a) mod n`. pub fn checked_mod_mul(&self, a: &BigNum, n: &BigNum) -> Result { unsafe { with_bn_in_ctx!(r, ctx, { ffi::BN_mod_mul(r.raw(), self.raw(), a.raw(), n.raw(), ctx) == 1 }) } } /// Equivalent to `self² mod n`. pub fn checked_mod_sqr(&self, n: &BigNum) -> Result { unsafe { with_bn_in_ctx!(r, ctx, { ffi::BN_mod_sqr(r.raw(), self.raw(), n.raw(), ctx) == 1 }) } } /// Raises `self` to the `p`th power. pub fn checked_exp(&self, p: &BigNum) -> Result { unsafe { with_bn_in_ctx!(r, ctx, { ffi::BN_exp(r.raw(), self.raw(), p.raw(), ctx) == 1 }) } } /// Equivalent to `self.checked_exp(p) mod n`. pub fn checked_mod_exp(&self, p: &BigNum, n: &BigNum) -> Result { unsafe { with_bn_in_ctx!(r, ctx, { ffi::BN_mod_exp(r.raw(), self.raw(), p.raw(), n.raw(), ctx) == 1 }) } } /// Calculates the modular multiplicative inverse of `self` modulo `n`, that is, an integer `r` /// such that `(self * r) % n == 1`. pub fn checked_mod_inv(&self, n: &BigNum) -> Result { unsafe { with_bn_in_ctx!(r, ctx, { !ffi::BN_mod_inverse(r.raw(), self.raw(), n.raw(), ctx).is_null() }) } } /// Add an `unsigned long` to `self`. This is more efficient than adding a `BigNum`. pub fn add_word(&mut self, w: c_ulong) -> Result<(), SslError> { unsafe { if ffi::BN_add_word(self.raw(), w) == 1 { Ok(()) } else { Err(SslError::get()) } } } pub fn sub_word(&mut self, w: c_ulong) -> Result<(), SslError> { unsafe { if ffi::BN_sub_word(self.raw(), w) == 1 { Ok(()) } else { Err(SslError::get()) } } } pub fn mul_word(&mut self, w: c_ulong) -> Result<(), SslError> { unsafe { if ffi::BN_mul_word(self.raw(), w) == 1 { Ok(()) } else { Err(SslError::get()) } } } pub fn div_word(&mut self, w: c_ulong) -> Result { unsafe { let result = ffi::BN_div_word(self.raw(), w); if result != !0 as c_ulong { Ok(result) } else { Err(SslError::get()) } } } pub fn mod_word(&self, w: c_ulong) -> Result { unsafe { let result = ffi::BN_mod_word(self.raw(), w); if result != !0 as c_ulong { Ok(result) } else { Err(SslError::get()) } } } /// Computes the greatest common denominator of `self` and `a`. pub fn checked_gcd(&self, a: &BigNum) -> Result { unsafe { with_bn_in_ctx!(r, ctx, { ffi::BN_gcd(r.raw(), self.raw(), a.raw(), ctx) == 1 }) } } /// Generates a prime number. /// /// # Parameters /// /// * `bits`: The length of the prime in bits (lower bound). /// * `safe`: If true, returns a "safe" prime `p` so that `(p-1)/2` is also prime. /// * `add`/`rem`: If `add` is set to `Some(add)`, `p % add == rem` will hold, where `p` is the /// generated prime and `rem` is `1` if not specified (`None`). pub fn checked_generate_prime(bits: i32, safe: bool, add: Option<&BigNum>, rem: Option<&BigNum>) -> Result { unsafe { with_bn_in_ctx!(r, ctx, { let add_arg = add.map(|a| a.raw()).unwrap_or(ptr::null_mut()); let rem_arg = rem.map(|r| r.raw()).unwrap_or(ptr::null_mut()); ffi::BN_generate_prime_ex(r.raw(), bits as c_int, safe as c_int, add_arg, rem_arg, ptr::null()) == 1 }) } } /// Checks whether `self` is prime. /// /// Performs a Miller-Rabin probabilistic primality test with `checks` iterations. /// /// # Return Value /// /// Returns `true` if `self` is prime with an error probability of less than `0.25 ^ checks`. pub fn is_prime(&self, checks: i32) -> Result { unsafe { with_ctx!(ctx, { Ok(ffi::BN_is_prime_ex(self.raw(), checks as c_int, ctx, ptr::null()) == 1) }) } } /// Checks whether `self` is prime with optional trial division. /// /// If `do_trial_division` is `true`, first performs trial division by a number of small primes. /// Then, like `is_prime`, performs a Miller-Rabin probabilistic primality test with `checks` /// iterations. /// /// # Return Value /// /// Returns `true` if `self` is prime with an error probability of less than `0.25 ^ checks`. pub fn is_prime_fast(&self, checks: i32, do_trial_division: bool) -> Result { unsafe { with_ctx!(ctx, { Ok(ffi::BN_is_prime_fasttest_ex(self.raw(), checks as c_int, ctx, do_trial_division as c_int, ptr::null()) == 1) }) } } /// Generates a cryptographically strong pseudo-random `BigNum`. /// /// # Parameters /// /// * `bits`: Length of the number in bits. /// * `prop`: The desired properties of the number. /// * `odd`: If `true`, the generated number will be odd. pub fn checked_new_random(bits: i32, prop: RNGProperty, odd: bool) -> Result { unsafe { with_bn_in_ctx!(r, ctx, { ffi::BN_rand(r.raw(), bits as c_int, prop as c_int, odd as c_int) == 1 }) } } /// The cryptographically weak counterpart to `checked_new_random`. pub fn checked_new_pseudo_random(bits: i32, prop: RNGProperty, odd: bool) -> Result { unsafe { with_bn_in_ctx!(r, ctx, { ffi::BN_pseudo_rand(r.raw(), bits as c_int, prop as c_int, odd as c_int) == 1 }) } } /// Generates a cryptographically strong pseudo-random `BigNum` `r` in the range /// `0 <= r < self`. pub fn checked_rand_in_range(&self) -> Result { unsafe { with_bn_in_ctx!(r, ctx, { ffi::BN_rand_range(r.raw(), self.raw()) == 1 }) } } /// The cryptographically weak counterpart to `checked_rand_in_range`. pub fn checked_pseudo_rand_in_range(&self) -> Result { unsafe { with_bn_in_ctx!(r, ctx, { ffi::BN_pseudo_rand_range(r.raw(), self.raw()) == 1 }) } } /// Sets bit `n`. Equivalent to `self |= (1 << n)`. /// /// When setting a bit outside of `self`, it is expanded. pub fn set_bit(&mut self, n: i32) -> Result<(), SslError> { unsafe { if ffi::BN_set_bit(self.raw(), n as c_int) == 1 { Ok(()) } else { Err(SslError::get()) } } } /// Clears bit `n`, setting it to 0. Equivalent to `self &= ~(1 << n)`. /// /// When clearing a bit outside of `self`, an error is returned. pub fn clear_bit(&mut self, n: i32) -> Result<(), SslError> { unsafe { if ffi::BN_clear_bit(self.raw(), n as c_int) == 1 { Ok(()) } else { Err(SslError::get()) } } } /// Returns `true` if the `n`th bit of `self` is set to 1, `false` otherwise. pub fn is_bit_set(&self, n: i32) -> bool { unsafe { ffi::BN_is_bit_set(self.raw(), n as c_int) == 1 } } /// Truncates `self` to the lowest `n` bits. /// /// An error occurs if `self` is already shorter than `n` bits. pub fn mask_bits(&mut self, n: i32) -> Result<(), SslError> { unsafe { if ffi::BN_mask_bits(self.raw(), n as c_int) == 1 { Ok(()) } else { Err(SslError::get()) } } } /// Returns `self`, shifted left by 1 bit. `self` may be negative. /// /// ``` /// # use openssl::bn::BigNum; /// let ref s = BigNum::new_from(0b0100).unwrap(); /// let result = BigNum::new_from(0b1000).unwrap(); /// /// assert_eq!(s.checked_shl1().unwrap(), result); /// ``` /// /// ``` /// # use openssl::bn::BigNum; /// let ref s = -BigNum::new_from(8).unwrap(); /// let result = -BigNum::new_from(16).unwrap(); /// /// // (-8) << 1 == -16 /// assert_eq!(s.checked_shl1().unwrap(), result); /// ``` pub fn checked_shl1(&self) -> Result { unsafe { with_bn!(r, { ffi::BN_lshift1(r.raw(), self.raw()) == 1 }) } } /// Returns `self`, shifted right by 1 bit. `self` may be negative. pub fn checked_shr1(&self) -> Result { unsafe { with_bn!(r, { ffi::BN_rshift1(r.raw(), self.raw()) == 1 }) } } pub fn checked_add(&self, a: &BigNum) -> Result { unsafe { with_bn!(r, { ffi::BN_add(r.raw(), self.raw(), a.raw()) == 1 }) } } pub fn checked_sub(&self, a: &BigNum) -> Result { unsafe { with_bn!(r, { ffi::BN_sub(r.raw(), self.raw(), a.raw()) == 1 }) } } pub fn checked_mul(&self, a: &BigNum) -> Result { unsafe { with_bn_in_ctx!(r, ctx, { ffi::BN_mul(r.raw(), self.raw(), a.raw(), ctx) == 1 }) } } pub fn checked_div(&self, a: &BigNum) -> Result { unsafe { with_bn_in_ctx!(r, ctx, { ffi::BN_div(r.raw(), ptr::null_mut(), self.raw(), a.raw(), ctx) == 1 }) } } pub fn checked_mod(&self, a: &BigNum) -> Result { unsafe { with_bn_in_ctx!(r, ctx, { ffi::BN_div(ptr::null_mut(), r.raw(), self.raw(), a.raw(), ctx) == 1 }) } } pub fn checked_shl(&self, a: &i32) -> Result { unsafe { with_bn!(r, { ffi::BN_lshift(r.raw(), self.raw(), *a as c_int) == 1 }) } } pub fn checked_shr(&self, a: &i32) -> Result { unsafe { with_bn!(r, { ffi::BN_rshift(r.raw(), self.raw(), *a as c_int) == 1 }) } } /// Inverts the sign of `self`. /// /// ``` /// # use openssl::bn::BigNum; /// let mut s = BigNum::new_from(8).unwrap(); /// /// s.negate(); /// assert_eq!(s, -BigNum::new_from(8).unwrap()); /// s.negate(); /// assert_eq!(s, BigNum::new_from(8).unwrap()); /// ``` pub fn negate(&mut self) { unsafe { ffi::BN_set_negative(self.raw(), !self.is_negative() as c_int) } } /// Compare the absolute values of `self` and `oth`. /// /// ``` /// # use openssl::bn::BigNum; /// # use std::cmp::Ordering; /// let s = -BigNum::new_from(8).unwrap(); /// let o = BigNum::new_from(8).unwrap(); /// /// assert_eq!(s.abs_cmp(o), Ordering::Equal); /// ``` pub fn abs_cmp(&self, oth: BigNum) -> Ordering { unsafe { let res = ffi::BN_ucmp(self.raw(), oth.raw()) as i32; if res < 0 { Ordering::Less } else if res > 0 { Ordering::Greater } else { Ordering::Equal } } } pub fn is_negative(&self) -> bool { unsafe { (*self.raw()).neg == 1 } } /// Returns the number of significant bits in `self`. pub fn num_bits(&self) -> i32 { unsafe { ffi::BN_num_bits(self.raw()) as i32 } } /// Returns the size of `self` in bytes. pub fn num_bytes(&self) -> i32 { (self.num_bits() + 7) / 8 } pub unsafe fn raw(&self) -> *mut ffi::BIGNUM { let BigNum(n) = *self; n } pub unsafe fn raw_ptr(&self) -> *const *mut ffi::BIGNUM { let BigNum(ref n) = *self; n } pub fn into_raw(self) -> *mut ffi::BIGNUM { let mut me = self; mem::replace(&mut me.0, ptr::null_mut()) } /// Returns a big-endian byte vector representation of the absolute value of `self`. /// /// `self` can be recreated by using `new_from_slice`. /// /// ``` /// # use openssl::bn::BigNum; /// let s = -BigNum::new_from(4543).unwrap(); /// let r = BigNum::new_from(4543).unwrap(); /// /// let s_vec = s.to_vec(); /// assert_eq!(BigNum::new_from_slice(&s_vec).unwrap(), r); /// ``` pub fn to_vec(&self) -> Vec { let size = self.num_bytes() as usize; let mut v = Vec::with_capacity(size); unsafe { ffi::BN_bn2bin(self.raw(), v.as_mut_ptr()); v.set_len(size); } v } /// Returns a decimal string representation of `self`. /// /// ``` /// # use openssl::bn::BigNum; /// let s = -BigNum::new_from(12345).unwrap(); /// /// assert_eq!(s.to_dec_str(), "-12345"); /// ``` pub fn to_dec_str(&self) -> String { unsafe { let buf = ffi::BN_bn2dec(self.raw()); assert!(!buf.is_null()); let str = String::from_utf8(CStr::from_ptr(buf as *const _).to_bytes().to_vec()) .unwrap(); ffi::CRYPTO_free(buf as *mut c_void); str } } /// Returns a hexadecimal string representation of `self`. /// /// ``` /// # use openssl::bn::BigNum; /// let s = -BigNum::new_from(0x99ff).unwrap(); /// /// assert_eq!(s.to_hex_str(), "-99FF"); /// ``` pub fn to_hex_str(&self) -> String { unsafe { let buf = ffi::BN_bn2hex(self.raw()); assert!(!buf.is_null()); let str = String::from_utf8(CStr::from_ptr(buf as *const _).to_bytes().to_vec()) .unwrap(); ffi::CRYPTO_free(buf as *mut c_void); str } } } impl fmt::Debug for BigNum { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.to_dec_str()) } } impl Eq for BigNum {} impl PartialEq for BigNum { fn eq(&self, oth: &BigNum) -> bool { unsafe { ffi::BN_cmp(self.raw(), oth.raw()) == 0 } } } impl Ord for BigNum { fn cmp(&self, oth: &BigNum) -> Ordering { self.partial_cmp(oth).unwrap() } } impl PartialOrd for BigNum { fn partial_cmp(&self, oth: &BigNum) -> Option { unsafe { let v = ffi::BN_cmp(self.raw(), oth.raw()); let ret = if v == 0 { Ordering::Equal } else if v < 0 { Ordering::Less } else { Ordering::Greater }; Some(ret) } } } impl Drop for BigNum { fn drop(&mut self) { unsafe { if !self.raw().is_null() { ffi::BN_clear_free(self.raw()); } } } } #[doc(hidden)] // This module only contains impls, so it's empty when generating docs pub mod unchecked { use std::ops::{Add, Div, Mul, Neg, Rem, Shl, Shr, Sub}; use ffi; use super::BigNum; impl<'a> Add<&'a BigNum> for &'a BigNum { type Output = BigNum; fn add(self, oth: &'a BigNum) -> BigNum { self.checked_add(oth).unwrap() } } impl<'a> Sub<&'a BigNum> for &'a BigNum { type Output = BigNum; fn sub(self, oth: &'a BigNum) -> BigNum { self.checked_sub(oth).unwrap() } } impl<'a> Mul<&'a BigNum> for &'a BigNum { type Output = BigNum; fn mul(self, oth: &'a BigNum) -> BigNum { self.checked_mul(oth).unwrap() } } impl<'a> Div<&'a BigNum> for &'a BigNum { type Output = BigNum; fn div(self, oth: &'a BigNum) -> BigNum { self.checked_div(oth).unwrap() } } impl<'a> Rem<&'a BigNum> for &'a BigNum { type Output = BigNum; fn rem(self, oth: &'a BigNum) -> BigNum { self.checked_mod(oth).unwrap() } } impl<'a> Shl for &'a BigNum { type Output = BigNum; fn shl(self, n: i32) -> BigNum { self.checked_shl(&n).unwrap() } } impl<'a> Shr for &'a BigNum { type Output = BigNum; fn shr(self, n: i32) -> BigNum { self.checked_shr(&n).unwrap() } } impl Clone for BigNum { fn clone(&self) -> BigNum { unsafe { let r = ffi::BN_dup(self.raw()); if r.is_null() { panic!("Unexpected null pointer from BN_dup(..)") } else { BigNum(r) } } } } impl Neg for BigNum { type Output = BigNum; fn neg(self) -> BigNum { let mut n = self.clone(); n.negate(); n } } } #[cfg(test)] mod tests { use bn::BigNum; #[test] fn test_to_from_slice() { let v0 = BigNum::new_from(10203004_u64).unwrap(); let vec = v0.to_vec(); let v1 = BigNum::new_from_slice(&vec).unwrap(); assert!(v0 == v1); } #[test] fn test_negation() { let a = BigNum::new_from(909829283_u64).unwrap(); assert!(!a.is_negative()); assert!((-a).is_negative()); } #[test] fn test_prime_numbers() { let a = BigNum::new_from(19029017_u64).unwrap(); let p = BigNum::checked_generate_prime(128, true, None, Some(&a)).unwrap(); assert!(p.is_prime(100).unwrap()); assert!(p.is_prime_fast(100, true).unwrap()); } }