use std; import core::ptr; import core::str; import core::vec; import ctypes::c_int; export crypter; export cryptermode; export encryptmode, decryptmode; export cryptertype; export aes_256_ecb, aes_256_cbc; export mk_crypter; export encrypt, decrypt; export _native; #[link_name = "crypto"] #[abi = "cdecl"] native mod _native { type EVP_CIPHER_CTX; type EVP_CIPHER; fn EVP_CIPHER_CTX_new() -> EVP_CIPHER_CTX; fn EVP_CIPHER_CTX_set_padding(ctx: EVP_CIPHER_CTX, padding: c_int); fn EVP_aes_128_ecb() -> EVP_CIPHER; fn EVP_aes_128_cbc() -> EVP_CIPHER; fn EVP_aes_192_ecb() -> EVP_CIPHER; fn EVP_aes_192_cbc() -> EVP_CIPHER; fn EVP_aes_256_ecb() -> EVP_CIPHER; fn EVP_aes_256_cbc() -> EVP_CIPHER; fn EVP_CipherInit(ctx: EVP_CIPHER_CTX, evp: EVP_CIPHER, key: *u8, iv: *u8, mode: c_int); fn EVP_CipherUpdate(ctx: EVP_CIPHER_CTX, outbuf: *u8, outlen: *u32, inbuf: *u8, inlen: u32); fn EVP_CipherFinal(ctx: EVP_CIPHER_CTX, res: *u8, len: *u32); } /* Object: crypter Represents a symmetric cipher context. */ iface crypter { /* Method: pad Enables or disables padding. If padding is disabled, total amount of data encrypted must be a multiple of block size. */ fn pad(padding: bool); /* Method: init Initializes this crypter. */ fn init(mode: cryptermode, key: [u8], iv: [u8]); /* Method: update Update this crypter with more data to encrypt or decrypt. Returns encrypted or decrypted bytes. */ fn update(data: [u8]) -> [u8]; /* Method: final Finish crypting. Returns the remaining partial block of output, if any. */ fn final() -> [u8]; } tag cryptermode { encryptmode; decryptmode; } tag cryptertype { aes_256_ecb; aes_256_cbc; } fn evpc(t: cryptertype) -> (_native::EVP_CIPHER, uint, uint) { alt t { aes_256_ecb. { (_native::EVP_aes_256_ecb(), 32u, 16u) } aes_256_cbc. { (_native::EVP_aes_256_cbc(), 32u, 16u) } } } fn mk_crypter(t: cryptertype) -> crypter { type crypterstate = { evp: _native::EVP_CIPHER, ctx: _native::EVP_CIPHER_CTX, keylen: uint, blocksize: uint }; impl of crypter for crypterstate { fn pad(padding: bool) { let v = (padding ? 1 : 0) as c_int; _native::EVP_CIPHER_CTX_set_padding(self.ctx, v); } fn init (mode: cryptermode, key: [u8], iv: [u8]) unsafe { let m = alt mode { encryptmode. { 1 } decryptmode. { 0 } } as c_int; assert(vec::len(key) == self.keylen); let pkey: *u8 = vec::unsafe::to_ptr::(key); let piv: *u8 = vec::unsafe::to_ptr::(iv); _native::EVP_CipherInit(self.ctx, self.evp, pkey, piv, m); } fn update(data: [u8]) -> [u8] unsafe { let pdata: *u8 = vec::unsafe::to_ptr::(data); let datalen: u32 = vec::len(data) as u32; let reslen: u32 = datalen + (self.blocksize as u32); let preslen: *u32 = ptr::addr_of(reslen); let res: [mutable u8] = vec::init_elt_mut::(0u8, reslen as uint); let pres: *u8 = vec::unsafe::to_ptr::(res); _native::EVP_CipherUpdate(self.ctx, pres, preslen, pdata, datalen); ret vec::slice::(res, 0u, *preslen as uint); } fn final() -> [u8] unsafe { let reslen: u32 = self.blocksize as u32; let preslen: *u32 = ptr::addr_of(reslen); let res: [mutable u8] = vec::init_elt_mut::(0u8, reslen as uint); let pres: *u8 = vec::unsafe::to_ptr::(res); _native::EVP_CipherFinal(self.ctx, pres, preslen); ret vec::slice::(res, 0u, *preslen as uint); } } let ctx = _native::EVP_CIPHER_CTX_new(); let (evp, keylen, blocksz) = evpc(t); let st = { evp: evp, ctx: ctx, keylen: keylen, blocksize: blocksz }; let h = st as crypter; ret h; } /* Function: encrypt Encrypts data, using the specified crypter type in encrypt mode with the specified key and iv; returns the resulting (encrypted) data. */ fn encrypt(t: cryptertype, key: [u8], iv: [u8], data: [u8]) -> [u8] { let c = mk_crypter(t); c.init(encryptmode, key, iv); let r = c.update(data); let rest = c.final(); ret r + rest; } /* Function: decrypt Decrypts data, using the specified crypter type in decrypt mode with the specified key and iv; returns the resulting (decrypted) data. */ fn decrypt(t: cryptertype, key: [u8], iv: [u8], data: [u8]) -> [u8] { let c = mk_crypter(t); c.init(decryptmode, key, iv); let r = c.update(data); let rest = c.final(); ret r + rest; } #[cfg(test)] mod tests { // Test vectors from FIPS-197: // http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf #[test] fn test_aes_256_ecb() { let k0 = [ 0x00u8, 0x01u8, 0x02u8, 0x03u8, 0x04u8, 0x05u8, 0x06u8, 0x07u8, 0x08u8, 0x09u8, 0x0au8, 0x0bu8, 0x0cu8, 0x0du8, 0x0eu8, 0x0fu8, 0x10u8, 0x11u8, 0x12u8, 0x13u8, 0x14u8, 0x15u8, 0x16u8, 0x17u8, 0x18u8, 0x19u8, 0x1au8, 0x1bu8, 0x1cu8, 0x1du8, 0x1eu8, 0x1fu8 ]; let p0 = [ 0x00u8, 0x11u8, 0x22u8, 0x33u8, 0x44u8, 0x55u8, 0x66u8, 0x77u8, 0x88u8, 0x99u8, 0xaau8, 0xbbu8, 0xccu8, 0xddu8, 0xeeu8, 0xffu8 ]; let c0 = [ 0x8eu8, 0xa2u8, 0xb7u8, 0xcau8, 0x51u8, 0x67u8, 0x45u8, 0xbfu8, 0xeau8, 0xfcu8, 0x49u8, 0x90u8, 0x4bu8, 0x49u8, 0x60u8, 0x89u8 ]; let c = mk_crypter(aes_256_ecb); c.init(encryptmode, k0, []); c.pad(false); let r0 = c.update(p0) + c.final(); assert(r0 == c0); c.init(decryptmode, k0, []); c.pad(false); let p1 = c.update(r0) + c.final(); assert(p1 == p0); } }