use std::cast; use std::libc::{c_int, c_uint}; use std::libc; use std::ptr; use std::vec; #[allow(non_camel_case_types)] pub type EVP_PKEY = *libc::c_void; #[allow(non_camel_case_types)] pub type ANYKEY = *libc::c_void; #[allow(non_camel_case_types)] pub type RSA = *libc::c_void; mod libcrypto { use super::*; use std::libc::{c_int, c_uint}; #[link_args = "-lcrypto"] extern "C" { fn EVP_PKEY_new() -> *EVP_PKEY; fn EVP_PKEY_free(k: *EVP_PKEY); fn EVP_PKEY_assign(k: *EVP_PKEY, t: c_int, inner: *ANYKEY) -> c_int; fn EVP_PKEY_get1_RSA(k: *EVP_PKEY) -> *RSA; fn i2d_PublicKey(k: *EVP_PKEY, buf: **mut u8) -> c_int; fn d2i_PublicKey(t: c_int, k: **EVP_PKEY, buf: **u8, len: c_uint) -> *EVP_PKEY; fn i2d_PrivateKey(k: *EVP_PKEY, buf: **mut u8) -> c_int; fn d2i_PrivateKey(t: c_int, k: **EVP_PKEY, buf: **u8, len: c_uint) -> *EVP_PKEY; fn RSA_generate_key(modsz: c_uint, e: c_uint, cb: *u8, cbarg: *u8) -> *RSA; fn RSA_size(k: *RSA) -> c_uint; fn RSA_public_encrypt(flen: c_uint, from: *u8, to: *mut u8, k: *RSA, pad: c_int) -> c_int; fn RSA_private_decrypt(flen: c_uint, from: *u8, to: *mut u8, k: *RSA, pad: c_int) -> c_int; fn RSA_sign(t: c_int, m: *u8, mlen: c_uint, sig: *mut u8, siglen: *mut c_uint, k: *RSA) -> c_int; fn RSA_verify(t: c_int, m: *u8, mlen: c_uint, sig: *u8, siglen: c_uint, k: *RSA) -> c_int; } } enum Parts { Neither, Public, Both } #[doc = "Represents a role an asymmetric key might be appropriate for."] pub enum Role { Encrypt, Decrypt, Sign, Verify } fn rsa_to_any(rsa: *RSA) -> *ANYKEY { unsafe { cast::transmute(rsa) } } fn any_to_rsa(anykey: *ANYKEY) -> *RSA { unsafe { cast::transmute(anykey) } } pub struct PKey { priv evp: *EVP_PKEY, priv parts: Parts, } pub fn PKey() -> PKey { PKey { evp: unsafe { libcrypto::EVP_PKEY_new() }, parts: Neither } } ///Represents a public key, optionally with a private key attached. impl PKey { fn _tostr(&self, f: extern "C" unsafe fn(*EVP_PKEY, **mut u8) -> c_int) -> ~[u8] { unsafe { let len = f(self.evp, ptr::null()); if len < 0 as c_int { return ~[]; } let mut s = vec::from_elem(len as uint, 0u8); let r = do s.as_mut_buf |buf, _| { f(self.evp, &buf) }; s.truncate(r as uint); s } } fn _fromstr(&mut self, s: &[u8], f: extern "C" unsafe fn(c_int, **EVP_PKEY, **u8, c_uint) -> *EVP_PKEY) { do s.as_imm_buf |ps, len| { let evp = ptr::null(); unsafe { f(6 as c_int, &evp, &ps, len as c_uint); } self.evp = evp; } } pub fn gen(&mut self, keysz: uint) { unsafe { let rsa = libcrypto::RSA_generate_key( keysz as c_uint, 65537u as c_uint, ptr::null(), ptr::null() ); let rsa_ = rsa_to_any(rsa); // XXX: 6 == NID_rsaEncryption libcrypto::EVP_PKEY_assign(self.evp, 6 as c_int, rsa_); self.parts = Both; } } /** * Returns a serialized form of the public key, suitable for load_pub(). */ pub fn save_pub(&self) -> ~[u8] { self._tostr(libcrypto::i2d_PublicKey) } /** * Loads a serialized form of the public key, as produced by save_pub(). */ pub fn load_pub(&mut self, s: &[u8]) { self._fromstr(s, libcrypto::d2i_PublicKey); self.parts = Public; } /** * Returns a serialized form of the public and private keys, suitable for * load_priv(). */ pub fn save_priv(&self) -> ~[u8] { self._tostr(libcrypto::i2d_PrivateKey) } /** * Loads a serialized form of the public and private keys, as produced by * save_priv(). */ pub fn load_priv(&mut self, s: &[u8]) { self._fromstr(s, libcrypto::d2i_PrivateKey); self.parts = Both; } /** * Returns the size of the public key modulus. */ pub fn size(&self) -> uint { unsafe { libcrypto::RSA_size(libcrypto::EVP_PKEY_get1_RSA(self.evp)) as uint } } /** * Returns whether this pkey object can perform the specified role. */ pub fn can(&self, r: Role) -> bool { match r { Encrypt => match self.parts { Neither => false, _ => true, }, Verify => match self.parts { Neither => false, _ => true, }, Decrypt => match self.parts { Both => true, _ => false, }, Sign => match self.parts { Both => true, _ => false, }, } } /** * Returns the maximum amount of data that can be encrypted by an encrypt() * call. */ pub fn max_data(&self) -> uint { unsafe { let rsa = libcrypto::EVP_PKEY_get1_RSA(self.evp); let len = libcrypto::RSA_size(rsa); // 41 comes from RSA_public_encrypt(3) for OAEP len as uint - 41u } } /** * Encrypts data using OAEP padding, returning the encrypted data. The * supplied data must not be larger than max_data(). */ pub fn encrypt(&self, s: &[u8]) -> ~[u8] { unsafe { let rsa = libcrypto::EVP_PKEY_get1_RSA(self.evp); let len = libcrypto::RSA_size(rsa); // 41 comes from RSA_public_encrypt(3) for OAEP assert!(s.len() < libcrypto::RSA_size(rsa) as uint - 41u); let mut r = vec::from_elem(len as uint + 1u, 0u8); let rv = do r.as_mut_buf |pr, _len| { do s.as_imm_buf |ps, s_len| { // XXX: 4 == RSA_PKCS1_OAEP_PADDING libcrypto::RSA_public_encrypt( s_len as c_uint, ps, pr, rsa, 4 as c_int ) } }; if rv < 0 as c_int { ~[] } else { r.truncate(rv as uint); r } } } /** * Decrypts data, expecting OAEP padding, returning the decrypted data. */ pub fn decrypt(&self, s: &[u8]) -> ~[u8] { unsafe { let rsa = libcrypto::EVP_PKEY_get1_RSA(self.evp); let len = libcrypto::RSA_size(rsa); assert!(s.len() as c_uint == libcrypto::RSA_size(rsa)); let mut r = vec::from_elem(len as uint + 1u, 0u8); let rv = do r.as_mut_buf |pr, _len| { do s.as_imm_buf |ps, s_len| { // XXX: 4 == RSA_PKCS1_OAEP_PADDING libcrypto::RSA_private_decrypt( s_len as c_uint, ps, pr, rsa, 4 as c_int ) } }; if rv < 0 as c_int { ~[] } else { r.truncate(rv as uint); r } } } /** * Signs data, using OpenSSL's default scheme and sha256. Unlike encrypt(), * can process an arbitrary amount of data; returns the signature. */ pub fn sign(&self, s: &[u8]) -> ~[u8] { unsafe { let rsa = libcrypto::EVP_PKEY_get1_RSA(self.evp); let len = libcrypto::RSA_size(rsa); let mut r = vec::from_elem(len as uint + 1u, 0u8); let rv = do r.as_mut_buf |pr, _len| { do s.as_imm_buf |ps, s_len| { let mut len = len; // XXX: 672 == NID_sha256 libcrypto::RSA_sign( 672 as c_int, ps, s_len as c_uint, pr, &mut len, rsa) } }; if rv < 0 as c_int { ~[] } else { r.truncate(len as uint); r } } } /** * Verifies a signature s (using OpenSSL's default scheme and sha256) on a * message m. Returns true if the signature is valid, and false otherwise. */ pub fn verify(&self, m: &[u8], s: &[u8]) -> bool { unsafe { let rsa = libcrypto::EVP_PKEY_get1_RSA(self.evp); do m.as_imm_buf |pm, m_len| { do s.as_imm_buf |ps, s_len| { // XXX: 672 == NID_sha256 let rv = libcrypto::RSA_verify( 672 as c_int, pm, m_len as c_uint, ps, s_len as c_uint, rsa ); rv == 1 as c_int } } } } } #[cfg(test)] mod tests { use super::*; #[test] fn test_gen_pub() { let mut k0 = PKey(); let mut k1 = PKey(); k0.gen(512u); k1.load_pub(k0.save_pub()); assert!(k0.save_pub() == k1.save_pub()); assert!(k0.size() == k1.size()); assert!(k0.can(Encrypt)); assert!(k0.can(Decrypt)); assert!(k0.can(Verify)); assert!(k0.can(Sign)); assert!(k1.can(Encrypt)); assert!(!k1.can(Decrypt)); assert!(k1.can(Verify)); assert!(!k1.can(Sign)); } #[test] fn test_gen_priv() { let mut k0 = PKey(); let mut k1 = PKey(); k0.gen(512u); k1.load_priv(k0.save_priv()); assert!(k0.save_priv() == k1.save_priv()); assert!(k0.size() == k1.size()); assert!(k0.can(Encrypt)); assert!(k0.can(Decrypt)); assert!(k0.can(Verify)); assert!(k0.can(Sign)); assert!(k1.can(Encrypt)); assert!(k1.can(Decrypt)); assert!(k1.can(Verify)); assert!(k1.can(Sign)); } #[test] fn test_encrypt() { let mut k0 = PKey(); let mut k1 = PKey(); let msg = ~[0xdeu8, 0xadu8, 0xd0u8, 0x0du8]; k0.gen(512u); k1.load_pub(k0.save_pub()); let emsg = k1.encrypt(msg); let dmsg = k0.decrypt(emsg); assert!(msg == dmsg); } #[test] fn test_sign() { let mut k0 = PKey(); let mut k1 = PKey(); let msg = ~[0xdeu8, 0xadu8, 0xd0u8, 0x0du8]; k0.gen(512u); k1.load_pub(k0.save_pub()); let sig = k0.sign(msg); let rv = k1.verify(msg, sig); assert!(rv == true); } }