use std::cmp; use std::ptr; use libc::c_int; use ffi; use {cvt, cvt_p}; use error::ErrorStack; #[derive(Copy, Clone)] pub enum Mode { Encrypt, Decrypt, } #[derive(Copy, Clone)] pub struct Cipher(*const ffi::EVP_CIPHER); impl Cipher { pub fn aes_128_ecb() -> Cipher { unsafe { Cipher(ffi::EVP_aes_128_ecb()) } } pub fn aes_128_cbc() -> Cipher { unsafe { Cipher(ffi::EVP_aes_128_cbc()) } } pub fn aes_128_xts() -> Cipher { unsafe { Cipher(ffi::EVP_aes_128_xts()) } } pub fn aes_128_ctr() -> Cipher { unsafe { Cipher(ffi::EVP_aes_128_ctr()) } } pub fn aes_128_cfb1() -> Cipher { unsafe { Cipher(ffi::EVP_aes_128_cfb1()) } } pub fn aes_128_cfb128() -> Cipher { unsafe { Cipher(ffi::EVP_aes_128_cfb128()) } } pub fn aes_128_cfb8() -> Cipher { unsafe { Cipher(ffi::EVP_aes_128_cfb8()) } } pub fn aes_256_ecb() -> Cipher { unsafe { Cipher(ffi::EVP_aes_256_ecb()) } } pub fn aes_256_cbc() -> Cipher { unsafe { Cipher(ffi::EVP_aes_256_cbc()) } } pub fn aes_256_xts() -> Cipher { unsafe { Cipher(ffi::EVP_aes_256_xts()) } } pub fn aes_256_ctr() -> Cipher { unsafe { Cipher(ffi::EVP_aes_256_ctr()) } } pub fn aes_256_cfb1() -> Cipher { unsafe { Cipher(ffi::EVP_aes_256_cfb1()) } } pub fn aes_256_cfb128() -> Cipher { unsafe { Cipher(ffi::EVP_aes_256_cfb128()) } } pub fn aes_256_cfb8() -> Cipher { unsafe { Cipher(ffi::EVP_aes_256_cfb8()) } } pub fn des_cbc() -> Cipher { unsafe { Cipher(ffi::EVP_des_cbc()) } } pub fn des_ecb() -> Cipher { unsafe { Cipher(ffi::EVP_des_ecb()) } } pub fn rc4() -> Cipher { unsafe { Cipher(ffi::EVP_rc4()) } } pub fn as_ptr(&self) -> *const ffi::EVP_CIPHER { self.0 } /// Returns the length of keys used with this cipher. pub fn key_len(&self) -> usize { unsafe { EVP_CIPHER_key_length(self.0) as usize } } /// Returns the length of the IV used with this cipher, or `None` if the /// cipher does not use an IV. pub fn iv_len(&self) -> Option { unsafe { let len = EVP_CIPHER_iv_length(self.0) as usize; if len == 0 { None } else { Some(len) } } } /// Returns the block size of the cipher. /// /// # Note /// /// Stream ciphers such as RC4 have a block size of 1. pub fn block_size(&self) -> usize { unsafe { EVP_CIPHER_block_size(self.0) as usize } } } /// Represents a symmetric cipher context. pub struct Crypter { ctx: *mut ffi::EVP_CIPHER_CTX, block_size: usize, } impl Crypter { /// Creates a new `Crypter`. /// /// # Panics /// /// Panics if an IV is required by the cipher but not provided, or if the /// IV's length does not match the expected length (see `Cipher::iv_len`). pub fn new(t: Cipher, mode: Mode, key: &[u8], iv: Option<&[u8]>) -> Result { ffi::init(); unsafe { let ctx = try!(cvt_p(ffi::EVP_CIPHER_CTX_new())); let crypter = Crypter { ctx: ctx, block_size: t.block_size(), }; let mode = match mode { Mode::Encrypt => 1, Mode::Decrypt => 0, }; try!(cvt(ffi::EVP_CipherInit_ex(crypter.ctx, t.as_ptr(), ptr::null_mut(), ptr::null_mut(), ptr::null_mut(), mode))); assert!(key.len() <= c_int::max_value() as usize); try!(cvt(ffi::EVP_CIPHER_CTX_set_key_length(crypter.ctx, key.len() as c_int))); let key = key.as_ptr() as *mut _; let iv = match (iv, t.iv_len()) { (Some(iv), Some(len)) => { assert!(iv.len() == len); iv.as_ptr() as *mut _ } (Some(_), None) | (None, None) => ptr::null_mut(), (None, Some(_)) => panic!("an IV is required for this cipher"), }; try!(cvt(ffi::EVP_CipherInit_ex(crypter.ctx, ptr::null(), ptr::null_mut(), key, iv, mode))); Ok(crypter) } } /// Enables or disables padding. /// /// If padding is disabled, total amount of data encrypted/decrypted must /// be a multiple of the cipher's block size. pub fn pad(&mut self, padding: bool) { unsafe { ffi::EVP_CIPHER_CTX_set_padding(self.ctx, padding as c_int); } } /// Feeds data from `input` through the cipher, writing encrypted/decrypted /// bytes into `output`. /// /// The number of bytes written to `output` is returned. Note that this may /// not be equal to the length of `input`. /// /// # Panics /// /// Panics if `output.len() < input.len() + block_size` where /// `block_size` is the block size of the cipher (see `Cipher::block_size`), /// or if `output.len() > c_int::max_value()`. pub fn update(&mut self, input: &[u8], output: &mut [u8]) -> Result { unsafe { assert!(output.len() >= input.len() + self.block_size); assert!(output.len() <= c_int::max_value() as usize); let mut outl = output.len() as c_int; let inl = input.len() as c_int; try!(cvt(ffi::EVP_CipherUpdate(self.ctx, output.as_mut_ptr(), &mut outl, input.as_ptr(), inl))); Ok(outl as usize) } } /// Finishes the encryption/decryption process, writing any remaining data /// to `output`. /// /// The number of bytes written to `output` is returned. /// /// `update` should not be called after this method. /// /// # Panics /// /// Panics if `output` is less than the cipher's block size. pub fn finalize(&mut self, output: &mut [u8]) -> Result { unsafe { assert!(output.len() >= self.block_size); let mut outl = cmp::min(output.len(), c_int::max_value() as usize) as c_int; try!(cvt(ffi::EVP_CipherFinal(self.ctx, output.as_mut_ptr(), &mut outl))); Ok(outl as usize) } } } impl Drop for Crypter { fn drop(&mut self) { unsafe { ffi::EVP_CIPHER_CTX_free(self.ctx); } } } /** * Encrypts data, using the specified crypter type in encrypt mode with the * specified key and iv; returns the resulting (encrypted) data. */ pub fn encrypt(t: Cipher, key: &[u8], iv: Option<&[u8]>, data: &[u8]) -> Result, ErrorStack> { cipher(t, Mode::Encrypt, key, iv, data) } /** * Decrypts data, using the specified crypter type in decrypt mode with the * specified key and iv; returns the resulting (decrypted) data. */ pub fn decrypt(t: Cipher, key: &[u8], iv: Option<&[u8]>, data: &[u8]) -> Result, ErrorStack> { cipher(t, Mode::Decrypt, key, iv, data) } fn cipher(t: Cipher, mode: Mode, key: &[u8], iv: Option<&[u8]>, data: &[u8]) -> Result, ErrorStack> { let mut c = try!(Crypter::new(t, mode, key, iv)); let mut out = vec![0; data.len() + t.block_size()]; let count = try!(c.update(data, &mut out)); let rest = try!(c.finalize(&mut out[count..])); out.truncate(count + rest); Ok(out) } #[cfg(ossl110)] use ffi::{EVP_CIPHER_iv_length, EVP_CIPHER_block_size, EVP_CIPHER_key_length}; #[cfg(ossl10x)] #[allow(bad_style)] mod compat { use libc::c_int; use ffi::EVP_CIPHER; pub unsafe fn EVP_CIPHER_iv_length(ptr: *const EVP_CIPHER) -> c_int { (*ptr).iv_len } pub unsafe fn EVP_CIPHER_block_size(ptr: *const EVP_CIPHER) -> c_int { (*ptr).block_size } pub unsafe fn EVP_CIPHER_key_length(ptr: *const EVP_CIPHER) -> c_int { (*ptr).key_len } } #[cfg(ossl10x)] use self::compat::*; #[cfg(test)] mod tests { use serialize::hex::{FromHex, ToHex}; // Test vectors from FIPS-197: // http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf #[test] fn test_aes_256_ecb() { let k0 = [0x00u8, 0x01u8, 0x02u8, 0x03u8, 0x04u8, 0x05u8, 0x06u8, 0x07u8, 0x08u8, 0x09u8, 0x0au8, 0x0bu8, 0x0cu8, 0x0du8, 0x0eu8, 0x0fu8, 0x10u8, 0x11u8, 0x12u8, 0x13u8, 0x14u8, 0x15u8, 0x16u8, 0x17u8, 0x18u8, 0x19u8, 0x1au8, 0x1bu8, 0x1cu8, 0x1du8, 0x1eu8, 0x1fu8]; let p0 = [0x00u8, 0x11u8, 0x22u8, 0x33u8, 0x44u8, 0x55u8, 0x66u8, 0x77u8, 0x88u8, 0x99u8, 0xaau8, 0xbbu8, 0xccu8, 0xddu8, 0xeeu8, 0xffu8]; let c0 = [0x8eu8, 0xa2u8, 0xb7u8, 0xcau8, 0x51u8, 0x67u8, 0x45u8, 0xbfu8, 0xeau8, 0xfcu8, 0x49u8, 0x90u8, 0x4bu8, 0x49u8, 0x60u8, 0x89u8]; let mut c = super::Crypter::new(super::Cipher::aes_256_ecb(), super::Mode::Encrypt, &k0, None).unwrap(); c.pad(false); let mut r0 = vec![0; c0.len() + super::Cipher::aes_256_ecb().block_size()]; let count = c.update(&p0, &mut r0).unwrap(); let rest = c.finalize(&mut r0[count..]).unwrap(); r0.truncate(count + rest); assert_eq!(r0.to_hex(), c0.to_hex()); let mut c = super::Crypter::new(super::Cipher::aes_256_ecb(), super::Mode::Decrypt, &k0, None).unwrap(); c.pad(false); let mut p1 = vec![0; r0.len() + super::Cipher::aes_256_ecb().block_size()]; let count = c.update(&r0, &mut p1).unwrap(); let rest = c.finalize(&mut p1[count..]).unwrap(); p1.truncate(count + rest); assert_eq!(p1.to_hex(), p0.to_hex()); } #[test] fn test_aes_256_cbc_decrypt() { let iv = [4_u8, 223_u8, 153_u8, 219_u8, 28_u8, 142_u8, 234_u8, 68_u8, 227_u8, 69_u8, 98_u8, 107_u8, 208_u8, 14_u8, 236_u8, 60_u8]; let data = [143_u8, 210_u8, 75_u8, 63_u8, 214_u8, 179_u8, 155_u8, 241_u8, 242_u8, 31_u8, 154_u8, 56_u8, 198_u8, 145_u8, 192_u8, 64_u8, 2_u8, 245_u8, 167_u8, 220_u8, 55_u8, 119_u8, 233_u8, 136_u8, 139_u8, 27_u8, 71_u8, 242_u8, 119_u8, 175_u8, 65_u8, 207_u8]; let ciphered_data = [0x4a_u8, 0x2e_u8, 0xe5_u8, 0x6_u8, 0xbf_u8, 0xcf_u8, 0xf2_u8, 0xd7_u8, 0xea_u8, 0x2d_u8, 0xb1_u8, 0x85_u8, 0x6c_u8, 0x93_u8, 0x65_u8, 0x6f_u8]; let mut cr = super::Crypter::new(super::Cipher::aes_256_cbc(), super::Mode::Decrypt, &data, Some(&iv)).unwrap(); cr.pad(false); let mut unciphered_data = vec![0; data.len() + super::Cipher::aes_256_cbc().block_size()]; let count = cr.update(&ciphered_data, &mut unciphered_data).unwrap(); let rest = cr.finalize(&mut unciphered_data[count..]).unwrap(); unciphered_data.truncate(count + rest); let expected_unciphered_data = b"I love turtles.\x01"; assert_eq!(&unciphered_data, expected_unciphered_data); } fn cipher_test(ciphertype: super::Cipher, pt: &str, ct: &str, key: &str, iv: &str) { use serialize::hex::ToHex; let pt = pt.from_hex().unwrap(); let ct = ct.from_hex().unwrap(); let key = key.from_hex().unwrap(); let iv = iv.from_hex().unwrap(); let computed = super::decrypt(ciphertype, &key, Some(&iv), &ct).unwrap(); let expected = pt; if computed != expected { println!("Computed: {}", computed.to_hex()); println!("Expected: {}", expected.to_hex()); if computed.len() != expected.len() { println!("Lengths differ: {} in computed vs {} expected", computed.len(), expected.len()); } panic!("test failure"); } } #[test] fn test_rc4() { let pt = "0000000000000000000000000000000000000000000000000000000000000000000000000000"; let ct = "A68686B04D686AA107BD8D4CAB191A3EEC0A6294BC78B60F65C25CB47BD7BB3A48EFC4D26BE4"; let key = "97CD440324DA5FD1F7955C1C13B6B466"; let iv = ""; cipher_test(super::Cipher::rc4(), pt, ct, key, iv); } #[test] fn test_aes256_xts() { // Test case 174 from // http://csrc.nist.gov/groups/STM/cavp/documents/aes/XTSTestVectors.zip let pt = "77f4ef63d734ebd028508da66c22cdebdd52ecd6ee2ab0a50bc8ad0cfd692ca5fcd4e6dedc45df7f\ 6503f462611dc542"; let ct = "ce7d905a7776ac72f240d22aafed5e4eb7566cdc7211220e970da634ce015f131a5ecb8d400bc9e8\ 4f0b81d8725dbbc7"; let key = "b6bfef891f83b5ff073f2231267be51eb084b791fa19a154399c0684c8b2dfcb37de77d28bbda3b\ 4180026ad640b74243b3133e7b9fae629403f6733423dae28"; let iv = "db200efb7eaaa737dbdf40babb68953f"; cipher_test(super::Cipher::aes_256_xts(), pt, ct, key, iv); } #[test] fn test_aes128_ctr() { let pt = "6BC1BEE22E409F96E93D7E117393172AAE2D8A571E03AC9C9EB76FAC45AF8E5130C81C46A35CE411\ E5FBC1191A0A52EFF69F2445DF4F9B17AD2B417BE66C3710"; let ct = "874D6191B620E3261BEF6864990DB6CE9806F66B7970FDFF8617187BB9FFFDFF5AE4DF3EDBD5D35E\ 5B4F09020DB03EAB1E031DDA2FBE03D1792170A0F3009CEE"; let key = "2B7E151628AED2A6ABF7158809CF4F3C"; let iv = "F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF"; cipher_test(super::Cipher::aes_128_ctr(), pt, ct, key, iv); } #[test] fn test_aes128_cfb1() { // Lifted from http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf let pt = "6bc1"; let ct = "68b3"; let key = "2b7e151628aed2a6abf7158809cf4f3c"; let iv = "000102030405060708090a0b0c0d0e0f"; cipher_test(super::Cipher::aes_128_cfb1(), pt, ct, key, iv); } #[test] fn test_aes128_cfb128() { let pt = "6bc1bee22e409f96e93d7e117393172a"; let ct = "3b3fd92eb72dad20333449f8e83cfb4a"; let key = "2b7e151628aed2a6abf7158809cf4f3c"; let iv = "000102030405060708090a0b0c0d0e0f"; cipher_test(super::Cipher::aes_128_cfb128(), pt, ct, key, iv); } #[test] fn test_aes128_cfb8() { let pt = "6bc1bee22e409f96e93d7e117393172aae2d"; let ct = "3b79424c9c0dd436bace9e0ed4586a4f32b9"; let key = "2b7e151628aed2a6abf7158809cf4f3c"; let iv = "000102030405060708090a0b0c0d0e0f"; cipher_test(super::Cipher::aes_128_cfb8(), pt, ct, key, iv); } #[test] fn test_aes256_cfb1() { let pt = "6bc1"; let ct = "9029"; let key = "603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4"; let iv = "000102030405060708090a0b0c0d0e0f"; cipher_test(super::Cipher::aes_256_cfb1(), pt, ct, key, iv); } #[test] fn test_aes256_cfb128() { let pt = "6bc1bee22e409f96e93d7e117393172a"; let ct = "dc7e84bfda79164b7ecd8486985d3860"; let key = "603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4"; let iv = "000102030405060708090a0b0c0d0e0f"; cipher_test(super::Cipher::aes_256_cfb128(), pt, ct, key, iv); } #[test] fn test_aes256_cfb8() { let pt = "6bc1bee22e409f96e93d7e117393172aae2d"; let ct = "dc1f1a8520a64db55fcc8ac554844e889700"; let key = "603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4"; let iv = "000102030405060708090a0b0c0d0e0f"; cipher_test(super::Cipher::aes_256_cfb8(), pt, ct, key, iv); } #[test] fn test_des_cbc() { let pt = "54686973206973206120746573742e"; let ct = "6f2867cfefda048a4046ef7e556c7132"; let key = "7cb66337f3d3c0fe"; let iv = "0001020304050607"; cipher_test(super::Cipher::des_cbc(), pt, ct, key, iv); } #[test] fn test_des_ecb() { let pt = "54686973206973206120746573742e"; let ct = "0050ab8aecec758843fe157b4dde938c"; let key = "7cb66337f3d3c0fe"; let iv = "0001020304050607"; cipher_test(super::Cipher::des_ecb(), pt, ct, key, iv); } }