use libc::c_int; use std::ptr::null; use crypto::symm_internal::evpc; use crypto::hash; use crypto::symm; use ffi; #[derive(Clone, Eq, PartialEq, Hash, Debug)] pub struct KeyIvPair { pub key: Vec, pub iv: Vec } /// Derives a key and an IV from various parameters. /// /// If specified `salt` must be 8 bytes in length. /// /// If the total key and IV length is less than 16 bytes and MD5 is used then /// the algorithm is compatible with the key derivation algorithm from PKCS#5 /// v1.5 or PBKDF1 from PKCS#5 v2.0. /// /// New applications should not use this and instead use `pbkdf2_hmac_sha1` or /// another more modern key derivation algorithm. pub fn evp_bytes_to_key_pbkdf1_compatible(typ: symm::Type, message_digest_type: hash::Type, data: &[u8], salt: Option<&[u8]>, count: u32) -> KeyIvPair { unsafe { let salt_ptr = match salt { Some(salt) => { assert_eq!(salt.len(), ffi::PKCS5_SALT_LEN as usize); salt.as_ptr() }, None => null() }; ffi::init(); let (evp, keylen, _) = evpc(typ); let message_digest = message_digest_type.evp_md(); let mut key = vec![0; keylen as usize]; let mut iv = vec![0; keylen as usize]; let ret: c_int = ffi::EVP_BytesToKey(evp, message_digest, salt_ptr, data.as_ptr(), data.len() as c_int, count as c_int, key.as_mut_ptr(), iv.as_mut_ptr()); assert!(ret == keylen as c_int); KeyIvPair { key: key, iv: iv } } } /// Derives a key from a password and salt using the PBKDF2-HMAC-SHA1 algorithm. pub fn pbkdf2_hmac_sha1(pass: &str, salt: &[u8], iter: usize, keylen: usize) -> Vec { unsafe { assert!(iter >= 1); assert!(keylen >= 1); let mut out = Vec::with_capacity(keylen); ffi::init(); let r = ffi::PKCS5_PBKDF2_HMAC_SHA1( pass.as_ptr(), pass.len() as c_int, salt.as_ptr(), salt.len() as c_int, iter as c_int, keylen as c_int, out.as_mut_ptr()); if r != 1 { panic!(); } out.set_len(keylen); out } } /// Derives a key from a password and salt using the PBKDF2-HMAC-SHA256 algorithm. #[cfg(feature = "pkcs5_pbkdf2_hmac")] pub fn pbkdf2_hmac_sha256(pass: &str, salt: &[u8], iter: usize, keylen: usize) -> Vec { pbkdf2_hmac_sha(pass, salt, iter, unsafe { ffi::EVP_sha256() }, keylen) } /// Derives a key from a password and salt using the PBKDF2-HMAC-SHA512 algorithm. #[cfg(feature = "pkcs5_pbkdf2_hmac")] pub fn pbkdf2_hmac_sha512(pass: &str, salt: &[u8], iter: usize, keylen: usize) -> Vec { pbkdf2_hmac_sha(pass, salt, iter, unsafe { ffi::EVP_sha512() }, keylen) } /// Derives a key from a password and salt using the PBKDF2-HMAC algorithm with a digest function. #[cfg(feature = "pkcs5_pbkdf2_hmac")] fn pbkdf2_hmac_sha(pass: &str, salt: &[u8], iter: usize, digest: *const ffi::EVP_MD, keylen: usize) -> Vec { unsafe { assert!(iter >= 1); assert!(keylen >= 1); let mut out = Vec::with_capacity(keylen); ffi::init(); let r = ffi::PKCS5_PBKDF2_HMAC( pass.as_ptr(), pass.len() as c_int, salt.as_ptr(), salt.len() as c_int, iter as c_int, digest, keylen as c_int, out.as_mut_ptr()); if r != 1 { panic!(); } out.set_len(keylen); out } } #[cfg(test)] mod tests { use crypto::hash; use crypto::symm; // Test vectors from // http://tools.ietf.org/html/draft-josefsson-pbkdf2-test-vectors-06 #[test] fn test_pbkdf2_hmac_sha1() { assert_eq!( super::pbkdf2_hmac_sha1( "password", "salt".as_bytes(), 1, 20 ), vec!( 0x0c_u8, 0x60_u8, 0xc8_u8, 0x0f_u8, 0x96_u8, 0x1f_u8, 0x0e_u8, 0x71_u8, 0xf3_u8, 0xa9_u8, 0xb5_u8, 0x24_u8, 0xaf_u8, 0x60_u8, 0x12_u8, 0x06_u8, 0x2f_u8, 0xe0_u8, 0x37_u8, 0xa6_u8 ) ); assert_eq!( super::pbkdf2_hmac_sha1( "password", "salt".as_bytes(), 2, 20 ), vec!( 0xea_u8, 0x6c_u8, 0x01_u8, 0x4d_u8, 0xc7_u8, 0x2d_u8, 0x6f_u8, 0x8c_u8, 0xcd_u8, 0x1e_u8, 0xd9_u8, 0x2a_u8, 0xce_u8, 0x1d_u8, 0x41_u8, 0xf0_u8, 0xd8_u8, 0xde_u8, 0x89_u8, 0x57_u8 ) ); assert_eq!( super::pbkdf2_hmac_sha1( "password", "salt".as_bytes(), 4096, 20 ), vec!( 0x4b_u8, 0x00_u8, 0x79_u8, 0x01_u8, 0xb7_u8, 0x65_u8, 0x48_u8, 0x9a_u8, 0xbe_u8, 0xad_u8, 0x49_u8, 0xd9_u8, 0x26_u8, 0xf7_u8, 0x21_u8, 0xd0_u8, 0x65_u8, 0xa4_u8, 0x29_u8, 0xc1_u8 ) ); assert_eq!( super::pbkdf2_hmac_sha1( "password", "salt".as_bytes(), 16777216, 20 ), vec!( 0xee_u8, 0xfe_u8, 0x3d_u8, 0x61_u8, 0xcd_u8, 0x4d_u8, 0xa4_u8, 0xe4_u8, 0xe9_u8, 0x94_u8, 0x5b_u8, 0x3d_u8, 0x6b_u8, 0xa2_u8, 0x15_u8, 0x8c_u8, 0x26_u8, 0x34_u8, 0xe9_u8, 0x84_u8 ) ); assert_eq!( super::pbkdf2_hmac_sha1( "passwordPASSWORDpassword", "saltSALTsaltSALTsaltSALTsaltSALTsalt".as_bytes(), 4096, 25 ), vec!( 0x3d_u8, 0x2e_u8, 0xec_u8, 0x4f_u8, 0xe4_u8, 0x1c_u8, 0x84_u8, 0x9b_u8, 0x80_u8, 0xc8_u8, 0xd8_u8, 0x36_u8, 0x62_u8, 0xc0_u8, 0xe4_u8, 0x4a_u8, 0x8b_u8, 0x29_u8, 0x1a_u8, 0x96_u8, 0x4c_u8, 0xf2_u8, 0xf0_u8, 0x70_u8, 0x38_u8 ) ); assert_eq!( super::pbkdf2_hmac_sha1( "pass\x00word", "sa\x00lt".as_bytes(), 4096, 16 ), vec!( 0x56_u8, 0xfa_u8, 0x6a_u8, 0xa7_u8, 0x55_u8, 0x48_u8, 0x09_u8, 0x9d_u8, 0xcc_u8, 0x37_u8, 0xd7_u8, 0xf0_u8, 0x34_u8, 0x25_u8, 0xe0_u8, 0xc3_u8 ) ); } // Test vectors from // https://git.lysator.liu.se/nettle/nettle/blob/nettle_3.1.1_release_20150424/testsuite/pbkdf2-test.c #[test] #[cfg(feature = "pkcs5_pbkdf2_hmac")] fn test_pbkdf2_hmac_sha256() { assert_eq!( super::pbkdf2_hmac_sha256( "passwd", "salt".as_bytes(), 1, 16 ), vec!( 0x55_u8, 0xac_u8, 0x04_u8, 0x6e_u8, 0x56_u8, 0xe3_u8, 0x08_u8, 0x9f_u8, 0xec_u8, 0x16_u8, 0x91_u8, 0xc2_u8, 0x25_u8, 0x44_u8, 0xb6_u8, 0x05_u8 ) ); assert_eq!( super::pbkdf2_hmac_sha256( "Password", "NaCl".as_bytes(), 80000, 16 ), vec!( 0x4d_u8, 0xdc_u8, 0xd8_u8, 0xf6_u8, 0x0b_u8, 0x98_u8, 0xbe_u8, 0x21_u8, 0x83_u8, 0x0c_u8, 0xee_u8, 0x5e_u8, 0xf2_u8, 0x27_u8, 0x01_u8, 0xf9_u8 ) ); } // Test vectors from // https://git.lysator.liu.se/nettle/nettle/blob/nettle_3.1.1_release_20150424/testsuite/pbkdf2-test.c #[test] #[cfg(feature = "pkcs5_pbkdf2_hmac")] fn test_pbkdf2_hmac_sha512() { assert_eq!( super::pbkdf2_hmac_sha512( "password", "NaCL".as_bytes(), 1, 64 ), vec!( 0x73_u8, 0xde_u8, 0xcf_u8, 0xa5_u8, 0x8a_u8, 0xa2_u8, 0xe8_u8, 0x4f_u8, 0x94_u8, 0x77_u8, 0x1a_u8, 0x75_u8, 0x73_u8, 0x6b_u8, 0xb8_u8, 0x8b_u8, 0xd3_u8, 0xc7_u8, 0xb3_u8, 0x82_u8, 0x70_u8, 0xcf_u8, 0xb5_u8, 0x0c_u8, 0xb3_u8, 0x90_u8, 0xed_u8, 0x78_u8, 0xb3_u8, 0x05_u8, 0x65_u8, 0x6a_u8, 0xf8_u8, 0x14_u8, 0x8e_u8, 0x52_u8, 0x45_u8, 0x2b_u8, 0x22_u8, 0x16_u8, 0xb2_u8, 0xb8_u8, 0x09_u8, 0x8b_u8, 0x76_u8, 0x1f_u8, 0xc6_u8, 0x33_u8, 0x60_u8, 0x60_u8, 0xa0_u8, 0x9f_u8, 0x76_u8, 0x41_u8, 0x5e_u8, 0x9f_u8, 0x71_u8, 0xea_u8, 0x47_u8, 0xf9_u8, 0xe9_u8, 0x06_u8, 0x43_u8, 0x06_u8 ) ); assert_eq!( super::pbkdf2_hmac_sha512( "pass\0word", "sa\0lt".as_bytes(), 1, 64 ), vec!( 0x71_u8, 0xa0_u8, 0xec_u8, 0x84_u8, 0x2a_u8, 0xbd_u8, 0x5c_u8, 0x67_u8, 0x8b_u8, 0xcf_u8, 0xd1_u8, 0x45_u8, 0xf0_u8, 0x9d_u8, 0x83_u8, 0x52_u8, 0x2f_u8, 0x93_u8, 0x36_u8, 0x15_u8, 0x60_u8, 0x56_u8, 0x3c_u8, 0x4d_u8, 0x0d_u8, 0x63_u8, 0xb8_u8, 0x83_u8, 0x29_u8, 0x87_u8, 0x10_u8, 0x90_u8, 0xe7_u8, 0x66_u8, 0x04_u8, 0xa4_u8, 0x9a_u8, 0xf0_u8, 0x8f_u8, 0xe7_u8, 0xc9_u8, 0xf5_u8, 0x71_u8, 0x56_u8, 0xc8_u8, 0x79_u8, 0x09_u8, 0x96_u8, 0xb2_u8, 0x0f_u8, 0x06_u8, 0xbc_u8, 0x53_u8, 0x5e_u8, 0x5a_u8, 0xb5_u8, 0x44_u8, 0x0d_u8, 0xf7_u8, 0xe8_u8, 0x78_u8, 0x29_u8, 0x6f_u8, 0xa7_u8 ) ); assert_eq!( super::pbkdf2_hmac_sha512( "passwordPASSWORDpassword", "salt\0\0\0".as_bytes(), 50, 64 ), vec!( 0x01_u8, 0x68_u8, 0x71_u8, 0xa4_u8, 0xc4_u8, 0xb7_u8, 0x5f_u8, 0x96_u8, 0x85_u8, 0x7f_u8, 0xd2_u8, 0xb9_u8, 0xf8_u8, 0xca_u8, 0x28_u8, 0x02_u8, 0x3b_u8, 0x30_u8, 0xee_u8, 0x2a_u8, 0x39_u8, 0xf5_u8, 0xad_u8, 0xca_u8, 0xc8_u8, 0xc9_u8, 0x37_u8, 0x5f_u8, 0x9b_u8, 0xda_u8, 0x1c_u8, 0xcd_u8, 0x1b_u8, 0x6f_u8, 0x0b_u8, 0x2f_u8, 0xc3_u8, 0xad_u8, 0xda_u8, 0x50_u8, 0x54_u8, 0x12_u8, 0xe7_u8, 0x9d_u8, 0x89_u8, 0x00_u8, 0x56_u8, 0xc6_u8, 0x2e_u8, 0x52_u8, 0x4c_u8, 0x7d_u8, 0x51_u8, 0x15_u8, 0x4b_u8, 0x1a_u8, 0x85_u8, 0x34_u8, 0x57_u8, 0x5b_u8, 0xd0_u8, 0x2d_u8, 0xee_u8, 0x39_u8 ) ); } #[test] fn test_evp_bytes_to_key_pbkdf1_compatible() { let salt = [ 16_u8, 34_u8, 19_u8, 23_u8, 141_u8, 4_u8, 207_u8, 221_u8 ]; let data = [ 143_u8, 210_u8, 75_u8, 63_u8, 214_u8, 179_u8, 155_u8, 241_u8, 242_u8, 31_u8, 154_u8, 56_u8, 198_u8, 145_u8, 192_u8, 64_u8, 2_u8, 245_u8, 167_u8, 220_u8, 55_u8, 119_u8, 233_u8, 136_u8, 139_u8, 27_u8, 71_u8, 242_u8, 119_u8, 175_u8, 65_u8, 207_u8 ]; let expected_key = vec![ 249_u8, 115_u8, 114_u8, 97_u8, 32_u8, 213_u8, 165_u8, 146_u8, 58_u8, 87_u8, 234_u8, 3_u8, 43_u8, 250_u8, 97_u8, 114_u8, 26_u8, 98_u8, 245_u8, 246_u8, 238_u8, 177_u8, 229_u8, 161_u8, 183_u8, 224_u8, 174_u8, 3_u8, 6_u8, 244_u8, 236_u8, 255_u8 ]; let expected_iv = vec![ 4_u8, 223_u8, 153_u8, 219_u8, 28_u8, 142_u8, 234_u8, 68_u8, 227_u8, 69_u8, 98_u8, 107_u8, 208_u8, 14_u8, 236_u8, 60_u8, 0_u8, 0_u8, 0_u8, 0_u8, 0_u8, 0_u8, 0_u8, 0_u8, 0_u8, 0_u8, 0_u8, 0_u8, 0_u8, 0_u8, 0_u8, 0_u8 ]; assert_eq!( super::evp_bytes_to_key_pbkdf1_compatible( symm::Type::AES_256_CBC, hash::Type::SHA1, &data, Some(&salt), 1 ), super::KeyIvPair { key: expected_key, iv: expected_iv } ); } }