use crate::ffi; use openssl_macros::corresponds; use std::convert::TryInto; use std::ffi::{c_uint, c_void}; use std::fmt; use std::io; use std::io::prelude::*; use std::ops::{Deref, DerefMut}; use std::ptr; use crate::error::ErrorStack; use crate::ffi::{EVP_MD_CTX_free, EVP_MD_CTX_new}; use crate::nid::Nid; use crate::{cvt, cvt_p}; #[derive(Copy, Clone, PartialEq, Eq)] pub struct MessageDigest(*const ffi::EVP_MD); impl MessageDigest { /// Creates a `MessageDigest` from a raw OpenSSL pointer. /// /// # Safety /// /// The caller must ensure the pointer is valid. #[must_use] pub unsafe fn from_ptr(x: *const ffi::EVP_MD) -> Self { MessageDigest(x) } /// Returns the `MessageDigest` corresponding to an `Nid`. #[corresponds(EVP_get_digestbynid)] #[must_use] pub fn from_nid(type_: Nid) -> Option { unsafe { let ptr = ffi::EVP_get_digestbynid(type_.as_raw()); if ptr.is_null() { None } else { Some(MessageDigest(ptr)) } } } #[must_use] pub fn md5() -> MessageDigest { unsafe { MessageDigest(ffi::EVP_md5()) } } #[must_use] pub fn sha1() -> MessageDigest { unsafe { MessageDigest(ffi::EVP_sha1()) } } #[must_use] pub fn sha224() -> MessageDigest { unsafe { MessageDigest(ffi::EVP_sha224()) } } #[must_use] pub fn sha256() -> MessageDigest { unsafe { MessageDigest(ffi::EVP_sha256()) } } #[must_use] pub fn sha384() -> MessageDigest { unsafe { MessageDigest(ffi::EVP_sha384()) } } #[must_use] pub fn sha512() -> MessageDigest { unsafe { MessageDigest(ffi::EVP_sha512()) } } #[must_use] pub fn sha512_256() -> MessageDigest { unsafe { MessageDigest(ffi::EVP_sha512_256()) } } #[allow(clippy::trivially_copy_pass_by_ref)] #[must_use] pub fn as_ptr(&self) -> *const ffi::EVP_MD { self.0 } /// The size of the digest in bytes. #[allow(clippy::trivially_copy_pass_by_ref)] #[must_use] pub fn size(&self) -> usize { unsafe { ffi::EVP_MD_size(self.0) } } /// The name of the digest. #[allow(clippy::trivially_copy_pass_by_ref)] #[must_use] pub fn type_(&self) -> Nid { Nid::from_raw(unsafe { ffi::EVP_MD_type(self.0) }) } } unsafe impl Sync for MessageDigest {} unsafe impl Send for MessageDigest {} #[derive(PartialEq, Copy, Clone)] enum State { Reset, Updated, Finalized, } use self::State::*; /// Provides message digest (hash) computation. /// /// # Examples /// /// Calculate a hash in one go: /// /// ``` /// use boring2::hash::{hash, MessageDigest}; /// /// let data = b"\x42\xF4\x97\xE0"; /// let spec = b"\x7c\x43\x0f\x17\x8a\xef\xdf\x14\x87\xfe\xe7\x14\x4e\x96\x41\xe2"; /// let res = hash(MessageDigest::md5(), data).unwrap(); /// assert_eq!(&*res, spec); /// ``` /// /// Supply the input in chunks: /// /// ``` /// use boring2::hash::{Hasher, MessageDigest}; /// /// let data = [b"\x42\xF4", b"\x97\xE0"]; /// let spec = b"\x7c\x43\x0f\x17\x8a\xef\xdf\x14\x87\xfe\xe7\x14\x4e\x96\x41\xe2"; /// let mut h = Hasher::new(MessageDigest::md5()).unwrap(); /// h.update(data[0]).unwrap(); /// h.update(data[1]).unwrap(); /// let res = h.finish().unwrap(); /// assert_eq!(&*res, spec); /// ``` /// /// # Warning /// /// Don't actually use MD5 and SHA-1 hashes, they're not secure anymore. /// /// Don't ever hash passwords, use the functions in the `pkcs5` module or bcrypt/scrypt instead. /// /// For extendable output functions (XOFs, i.e. SHAKE128/SHAKE256), you must use finish_xof instead /// of finish and provide a buf to store the hash. The hash will be as long as the buf. pub struct Hasher { ctx: *mut ffi::EVP_MD_CTX, md: *const ffi::EVP_MD, type_: MessageDigest, state: State, } unsafe impl Sync for Hasher {} unsafe impl Send for Hasher {} impl Hasher { /// Creates a new `Hasher` with the specified hash type. pub fn new(ty: MessageDigest) -> Result { ffi::init(); let ctx = unsafe { cvt_p(EVP_MD_CTX_new())? }; let mut h = Hasher { ctx, md: ty.as_ptr(), type_: ty, state: Finalized, }; h.init()?; Ok(h) } fn init(&mut self) -> Result<(), ErrorStack> { match self.state { Reset => return Ok(()), Updated => { self.finish()?; } Finalized => (), } unsafe { cvt(ffi::EVP_DigestInit_ex(self.ctx, self.md, ptr::null_mut()))?; } self.state = Reset; Ok(()) } /// Feeds data into the hasher. pub fn update(&mut self, data: &[u8]) -> Result<(), ErrorStack> { if self.state == Finalized { self.init()?; } unsafe { cvt(ffi::EVP_DigestUpdate( self.ctx, data.as_ptr() as *mut _, data.len(), ))?; } self.state = Updated; Ok(()) } /// Returns the hash of the data written and resets the non-XOF hasher. pub fn finish(&mut self) -> Result { if self.state == Finalized { self.init()?; } unsafe { let mut len = ffi::EVP_MAX_MD_SIZE.try_into().unwrap(); let mut buf = [0; ffi::EVP_MAX_MD_SIZE as usize]; cvt(ffi::EVP_DigestFinal_ex( self.ctx, buf.as_mut_ptr(), &mut len, ))?; self.state = Finalized; Ok(DigestBytes { buf, len: len as usize, }) } } /// Writes the hash of the data into the supplied buf and resets the XOF hasher. /// The hash will be as long as the buf. pub fn finish_xof(&mut self, buf: &mut [u8]) -> Result<(), ErrorStack> { if self.state == Finalized { self.init()?; } unsafe { cvt(ffi::EVP_DigestFinalXOF( self.ctx, buf.as_mut_ptr(), buf.len(), ))?; self.state = Finalized; Ok(()) } } } impl Write for Hasher { #[inline] fn write(&mut self, buf: &[u8]) -> io::Result { self.update(buf)?; Ok(buf.len()) } fn flush(&mut self) -> io::Result<()> { Ok(()) } } impl Clone for Hasher { fn clone(&self) -> Hasher { let ctx = unsafe { let ctx = EVP_MD_CTX_new(); assert!(!ctx.is_null()); let r = ffi::EVP_MD_CTX_copy_ex(ctx, self.ctx); assert_eq!(r, 1); ctx }; Hasher { ctx, md: self.md, type_: self.type_, state: self.state, } } } impl Drop for Hasher { fn drop(&mut self) { unsafe { if self.state != Finalized { drop(self.finish()); } EVP_MD_CTX_free(self.ctx); } } } /// The resulting bytes of a digest. /// /// This type derefs to a byte slice - it exists to avoid allocating memory to /// store the digest data. #[derive(Copy)] pub struct DigestBytes { pub(crate) buf: [u8; ffi::EVP_MAX_MD_SIZE as usize], pub(crate) len: usize, } impl Clone for DigestBytes { #[inline] fn clone(&self) -> DigestBytes { *self } } impl Deref for DigestBytes { type Target = [u8]; #[inline] fn deref(&self) -> &[u8] { &self.buf[..self.len] } } impl DerefMut for DigestBytes { #[inline] fn deref_mut(&mut self) -> &mut [u8] { &mut self.buf[..self.len] } } impl AsRef<[u8]> for DigestBytes { #[inline] fn as_ref(&self) -> &[u8] { self } } impl fmt::Debug for DigestBytes { fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { fmt::Debug::fmt(&**self, fmt) } } /// Computes the hash of the `data` with the non-XOF hasher `t`. pub fn hash(t: MessageDigest, data: &[u8]) -> Result { let mut h = Hasher::new(t)?; h.update(data)?; h.finish() } /// Computes the hash of the `data` with the XOF hasher `t` and stores it in `buf`. pub fn hash_xof(t: MessageDigest, data: &[u8], buf: &mut [u8]) -> Result<(), ErrorStack> { let mut h = Hasher::new(t)?; h.update(data)?; h.finish_xof(buf) } /// Computes HMAC with SHA-256 digest. pub fn hmac_sha256(key: &[u8], data: &[u8]) -> Result<[u8; 32], ErrorStack> { hmac(MessageDigest::sha256(), key, data) } /// Computes HMAC with SHA-512 digest. pub fn hmac_sha512(key: &[u8], data: &[u8]) -> Result<[u8; 64], ErrorStack> { hmac(MessageDigest::sha512(), key, data) } /// Computes HMAC with SHA-1 digest. pub fn hmac_sha1(key: &[u8], data: &[u8]) -> Result<[u8; 20], ErrorStack> { hmac(MessageDigest::sha1(), key, data) } fn hmac( digest: MessageDigest, key: &[u8], data: &[u8], ) -> Result<[u8; N], ErrorStack> { let mut out = [0u8; N]; let mut out_len: c_uint = 0; cvt_p(unsafe { ffi::HMAC( digest.as_ptr(), key.as_ptr() as *const c_void, key.len(), data.as_ptr(), data.len(), out.as_mut_ptr(), &mut out_len, ) })?; assert_eq!(out_len as usize, N); Ok(out) } #[cfg(test)] mod tests { use hex::{self, FromHex}; use std::io::prelude::*; use super::*; fn hash_test(hashtype: MessageDigest, hashtest: &(&str, &str)) { let res = hash(hashtype, &Vec::from_hex(hashtest.0).unwrap()).unwrap(); assert_eq!(hex::encode(res), hashtest.1); } fn hash_recycle_test(h: &mut Hasher, hashtest: &(&str, &str)) { h.write_all(&Vec::from_hex(hashtest.0).unwrap()).unwrap(); let res = h.finish().unwrap(); assert_eq!(hex::encode(res), hashtest.1); } // Test vectors from http://www.nsrl.nist.gov/testdata/ const MD5_TESTS: [(&str, &str); 13] = [ ("", "d41d8cd98f00b204e9800998ecf8427e"), ("7F", "83acb6e67e50e31db6ed341dd2de1595"), ("EC9C", "0b07f0d4ca797d8ac58874f887cb0b68"), ("FEE57A", "e0d583171eb06d56198fc0ef22173907"), ("42F497E0", "7c430f178aefdf1487fee7144e9641e2"), ("C53B777F1C", "75ef141d64cb37ec423da2d9d440c925"), ("89D5B576327B", "ebbaf15eb0ed784c6faa9dc32831bf33"), ("5D4CCE781EB190", "ce175c4b08172019f05e6b5279889f2c"), ("81901FE94932D7B9", "cd4d2f62b8cdb3a0cf968a735a239281"), ("C9FFDEE7788EFB4EC9", "e0841a231ab698db30c6c0f3f246c014"), ("66AC4B7EBA95E53DC10B", "a3b3cea71910d9af56742aa0bb2fe329"), ("A510CD18F7A56852EB0319", "577e216843dd11573574d3fb209b97d8"), ( "AAED18DBE8938C19ED734A8D", "6f80fb775f27e0a4ce5c2f42fc72c5f1", ), ]; #[test] fn test_hmac_sha256() { let hmac = hmac_sha256(b"That's a secret".as_slice(), b"Hello world!".as_slice()).unwrap(); assert_eq!( hmac, [ 0x50, 0xbb, 0x7d, 0xd2, 0xb8, 0xd2, 0x51, 0x5d, 0xb4, 0x2b, 0x70, 0xc3, 0x0b, 0xfd, 0xf5, 0x4c, 0x38, 0xa7, 0xae, 0x99, 0x07, 0xe5, 0x80, 0x0f, 0x8b, 0xe8, 0x34, 0x83, 0x55, 0x5f, 0xd0, 0xd4 ] ); } #[test] fn test_hmac_sha512() { let hmac = hmac_sha512(b"That's a secret".as_slice(), b"Hello world!".as_slice()).unwrap(); assert_eq!( hmac, [ 0xc2, 0x7a, 0x7f, 0x7c, 0x17, 0x4c, 0x87, 0x70, 0x7f, 0x8c, 0xb7, 0x90, 0x01, 0xba, 0x23, 0x0e, 0xb7, 0xd6, 0x1a, 0xfd, 0x50, 0xea, 0x40, 0x43, 0x5f, 0x03, 0x25, 0x5a, 0x22, 0xb7, 0x8d, 0x0e, 0xba, 0x0d, 0x47, 0xb8, 0xef, 0xaa, 0xbf, 0xb1, 0xe7, 0xad, 0xc5, 0xd1, 0xe5, 0xba, 0x4d, 0xa5, 0xd1, 0xbb, 0x5e, 0xe3, 0xc7, 0x27, 0x0c, 0x57, 0x76, 0xd4, 0x2f, 0xb6, 0x5c, 0x21, 0xb7, 0x3a ] ); } #[test] fn test_hmac_sha1() { let hmac = hmac_sha1(b"That's a secret".as_slice(), b"Hello world!".as_slice()).unwrap(); assert_eq!( hmac, [ 0xe1, 0x06, 0x76, 0x46, 0x3b, 0x82, 0x67, 0xa1, 0xae, 0xe5, 0x1c, 0xfa, 0xee, 0x36, 0x1d, 0x4b, 0xd4, 0x41, 0x6e, 0x37 ] ); } #[test] fn test_md5() { for test in &MD5_TESTS { hash_test(MessageDigest::md5(), test); } } #[test] fn test_md5_recycle() { let mut h = Hasher::new(MessageDigest::md5()).unwrap(); for test in &MD5_TESTS { hash_recycle_test(&mut h, test); } } #[test] fn test_finish_twice() { let mut h = Hasher::new(MessageDigest::md5()).unwrap(); h.write_all(&Vec::from_hex(MD5_TESTS[6].0).unwrap()) .unwrap(); h.finish().unwrap(); let res = h.finish().unwrap(); let null = hash(MessageDigest::md5(), &[]).unwrap(); assert_eq!(&*res, &*null); } #[test] #[allow(clippy::redundant_clone)] fn test_clone() { let i = 7; let inp = Vec::from_hex(MD5_TESTS[i].0).unwrap(); assert!(inp.len() > 2); let p = inp.len() / 2; let h0 = Hasher::new(MessageDigest::md5()).unwrap(); println!("Clone a new hasher"); let mut h1 = h0.clone(); h1.write_all(&inp[..p]).unwrap(); { println!("Clone an updated hasher"); let mut h2 = h1.clone(); h2.write_all(&inp[p..]).unwrap(); let res = h2.finish().unwrap(); assert_eq!(hex::encode(res), MD5_TESTS[i].1); } h1.write_all(&inp[p..]).unwrap(); let res = h1.finish().unwrap(); assert_eq!(hex::encode(res), MD5_TESTS[i].1); println!("Clone a finished hasher"); let mut h3 = h1.clone(); h3.write_all(&Vec::from_hex(MD5_TESTS[i + 1].0).unwrap()) .unwrap(); let res = h3.finish().unwrap(); assert_eq!(hex::encode(res), MD5_TESTS[i + 1].1); } #[test] fn test_sha1() { let tests = [("616263", "a9993e364706816aba3e25717850c26c9cd0d89d")]; for test in &tests { hash_test(MessageDigest::sha1(), test); } } #[test] fn test_sha224() { let tests = [( "616263", "23097d223405d8228642a477bda255b32aadbce4bda0b3f7e36c9da7", )]; for test in &tests { hash_test(MessageDigest::sha224(), test); } } #[test] fn test_sha256() { let tests = [( "616263", "ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad", )]; for test in &tests { hash_test(MessageDigest::sha256(), test); } } #[test] fn test_sha512() { let tests = [( "616263", "ddaf35a193617abacc417349ae20413112e6fa4e89a97ea20a9eeee64b55d39a2\ 192992a274fc1a836ba3c23a3feebbd454d4423643ce80e2a9ac94fa54ca49f", )]; for test in &tests { hash_test(MessageDigest::sha512(), test); } } #[test] fn test_sha512_256() { let tests = [( "616263", "53048e2681941ef99b2e29b76b4c7dabe4c2d0c634fc6d46e0e2f13107e7af23", )]; for test in &tests { hash_test(MessageDigest::sha512_256(), test); } } #[test] fn from_nid() { assert_eq!( MessageDigest::from_nid(Nid::SHA256).unwrap().as_ptr(), MessageDigest::sha256().as_ptr() ); } }