// Copyright 2013 Jack Lloyd // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // use libc::{c_int, c_uint}; use std::io; use std::io::prelude::*; use std::cmp; use ffi; use HashTypeInternals; use crypto::hash::Type; use error::ErrorStack; use c_helpers; #[derive(PartialEq, Copy, Clone)] enum State { Reset, Updated, Finalized, } use self::State::*; /// Provides HMAC computation. /// /// Requires the `hmac` feature. /// /// # Examples /// /// Calculate a HMAC in one go. /// /// ``` /// use openssl::crypto::hash::Type; /// use openssl::crypto::hmac::hmac; /// let key = b"Jefe"; /// let data = b"what do ya want for nothing?"; /// let spec = b"\x75\x0c\x78\x3e\x6a\xb0\xb5\x03\xea\xa8\x6e\x31\x0a\x5d\xb7\x38"; /// let res = hmac(Type::MD5, key, data).unwrap(); /// assert_eq!(res, spec); /// ``` /// /// Use the `Write` trait to supply the input in chunks. /// /// ``` /// use openssl::crypto::hash::Type; /// use openssl::crypto::hmac::HMAC; /// let key = b"Jefe"; /// let data: &[&[u8]] = &[b"what do ya ", b"want for nothing?"]; /// let spec = b"\x75\x0c\x78\x3e\x6a\xb0\xb5\x03\xea\xa8\x6e\x31\x0a\x5d\xb7\x38"; /// let mut h = HMAC::new(Type::MD5, &*key).unwrap(); /// h.update(data[0]).unwrap(); /// h.update(data[1]).unwrap(); /// let res = h.finish().unwrap(); /// assert_eq!(res, spec); /// ``` pub struct HMAC { ctx: ffi::HMAC_CTX, state: State, } impl HMAC { /// Creates a new `HMAC` with the specified hash type using the `key`. pub fn new(ty: Type, key: &[u8]) -> Result { ffi::init(); let ctx = unsafe { let mut ctx = ::std::mem::uninitialized(); ffi::HMAC_CTX_init(&mut ctx); ctx }; let md = ty.evp_md(); let mut h = HMAC { ctx: ctx, state: Finalized, }; try!(h.init_once(md, key)); Ok(h) } fn init_once(&mut self, md: *const ffi::EVP_MD, key: &[u8]) -> Result<(), ErrorStack> { unsafe { try_ssl!(c_helpers::rust_0_8_HMAC_Init_ex(&mut self.ctx, key.as_ptr() as *const _, key.len() as c_int, md, 0 as *mut _)); } self.state = Reset; Ok(()) } fn init(&mut self) -> Result<(), ErrorStack> { match self.state { Reset => return Ok(()), Updated => { try!(self.finish()); } Finalized => (), } // If the key and/or md is not supplied it's reused from the last time // avoiding redundant initializations unsafe { try_ssl!(c_helpers::rust_0_8_HMAC_Init_ex(&mut self.ctx, 0 as *const _, 0, 0 as *const _, 0 as *mut _)); } self.state = Reset; Ok(()) } pub fn update(&mut self, mut data: &[u8]) -> Result<(), ErrorStack> { if self.state == Finalized { try!(self.init()); } while !data.is_empty() { let len = cmp::min(data.len(), c_uint::max_value() as usize); unsafe { try_ssl!(c_helpers::rust_0_8_HMAC_Update(&mut self.ctx, data.as_ptr(), len as c_uint)); } data = &data[len..]; } self.state = Updated; Ok(()) } /// Returns the hash of the data written since creation or /// the last `finish` and resets the hasher. pub fn finish(&mut self) -> Result, ErrorStack> { if self.state == Finalized { try!(self.init()); } unsafe { let mut len = ffi::EVP_MAX_MD_SIZE; let mut res = vec![0; len as usize]; try_ssl!(c_helpers::rust_0_8_HMAC_Final(&mut self.ctx, res.as_mut_ptr(), &mut len)); res.truncate(len as usize); self.state = Finalized; Ok(res) } } } impl Write for HMAC { #[inline] fn write(&mut self, buf: &[u8]) -> io::Result { try!(self.update(buf)); Ok(buf.len()) } fn flush(&mut self) -> io::Result<()> { Ok(()) } } #[cfg(feature = "hmac_clone")] impl Clone for HMAC { /// Requires the `hmac_clone` feature. fn clone(&self) -> HMAC { let mut ctx: ffi::HMAC_CTX; unsafe { ctx = ::std::mem::uninitialized(); let r = ffi::HMAC_CTX_copy(&mut ctx, &self.ctx); assert_eq!(r, 1); } HMAC { ctx: ctx, state: self.state, } } } impl Drop for HMAC { fn drop(&mut self) { unsafe { if self.state != Finalized { drop(self.finish()); } ffi::HMAC_CTX_cleanup(&mut self.ctx); } } } /// Computes the HMAC of the `data` with the hash `t` and `key`. pub fn hmac(t: Type, key: &[u8], data: &[u8]) -> Result, ErrorStack> { let mut h = try!(HMAC::new(t, key)); try!(h.update(data)); h.finish() } #[cfg(test)] mod tests { use std::iter::repeat; use serialize::hex::FromHex; use crypto::hash::Type; use crypto::hash::Type::*; use super::{hmac, HMAC}; use std::io::prelude::*; fn test_hmac(ty: Type, tests: &[(Vec, Vec, Vec)]) { for &(ref key, ref data, ref res) in tests.iter() { assert_eq!(hmac(ty, &**key, &**data).unwrap(), *res); } } fn test_hmac_recycle(h: &mut HMAC, test: &(Vec, Vec, Vec)) { let &(_, ref data, ref res) = test; h.write_all(&**data).unwrap(); assert_eq!(h.finish().unwrap(), *res); } #[test] fn test_hmac_md5() { // test vectors from RFC 2202 let tests: [(Vec, Vec, Vec); 7] = [(repeat(0x0b_u8).take(16).collect(), b"Hi There".to_vec(), "9294727a3638bb1c13f48ef8158bfc9d".from_hex().unwrap()), (b"Jefe".to_vec(), b"what do ya want for nothing?".to_vec(), "750c783e6ab0b503eaa86e310a5db738".from_hex().unwrap()), (repeat(0xaa_u8).take(16).collect(), repeat(0xdd_u8).take(50).collect(), "56be34521d144c88dbb8c733f0e8b3f6".from_hex().unwrap()), ("0102030405060708090a0b0c0d0e0f10111213141516171819".from_hex().unwrap(), repeat(0xcd_u8).take(50).collect(), "697eaf0aca3a3aea3a75164746ffaa79".from_hex().unwrap()), (repeat(0x0c_u8).take(16).collect(), b"Test With Truncation".to_vec(), "56461ef2342edc00f9bab995690efd4c".from_hex().unwrap()), (repeat(0xaa_u8).take(80).collect(), b"Test Using Larger Than Block-Size Key - Hash Key First".to_vec(), "6b1ab7fe4bd7bf8f0b62e6ce61b9d0cd".from_hex().unwrap()), (repeat(0xaa_u8).take(80).collect(), b"Test Using Larger Than Block-Size Key \ and Larger Than One Block-Size Data" .to_vec(), "6f630fad67cda0ee1fb1f562db3aa53e".from_hex().unwrap())]; test_hmac(MD5, &tests); } #[test] fn test_hmac_md5_recycle() { let tests: [(Vec, Vec, Vec); 2] = [(repeat(0xaa_u8).take(80).collect(), b"Test Using Larger Than Block-Size Key - Hash Key First".to_vec(), "6b1ab7fe4bd7bf8f0b62e6ce61b9d0cd".from_hex().unwrap()), (repeat(0xaa_u8).take(80).collect(), b"Test Using Larger Than Block-Size Key \ and Larger Than One Block-Size Data" .to_vec(), "6f630fad67cda0ee1fb1f562db3aa53e".from_hex().unwrap())]; let mut h = HMAC::new(MD5, &*tests[0].0).unwrap(); for i in 0..100usize { let test = &tests[i % 2]; test_hmac_recycle(&mut h, test); } } #[test] fn test_finish_twice() { let test: (Vec, Vec, Vec) = (repeat(0xaa_u8).take(80).collect(), b"Test Using Larger Than Block-Size Key - Hash Key First".to_vec(), "6b1ab7fe4bd7bf8f0b62e6ce61b9d0cd".from_hex().unwrap()); let mut h = HMAC::new(Type::MD5, &*test.0).unwrap(); h.write_all(&*test.1).unwrap(); h.finish().unwrap(); let res = h.finish().unwrap(); let null = hmac(Type::MD5, &*test.0, &[]).unwrap(); assert_eq!(res, null); } #[test] #[cfg(feature = "hmac_clone")] fn test_clone() { let tests: [(Vec, Vec, Vec); 2] = [(repeat(0xaa_u8).take(80).collect(), b"Test Using Larger Than Block-Size Key - Hash Key First".to_vec(), "6b1ab7fe4bd7bf8f0b62e6ce61b9d0cd".from_hex().unwrap()), (repeat(0xaa_u8).take(80).collect(), b"Test Using Larger Than Block-Size Key \ and Larger Than One Block-Size Data" .to_vec(), "6f630fad67cda0ee1fb1f562db3aa53e".from_hex().unwrap())]; let p = tests[0].0.len() / 2; let h0 = HMAC::new(Type::MD5, &*tests[0].0).unwrap(); println!("Clone a new hmac"); let mut h1 = h0.clone(); h1.write_all(&tests[0].1[..p]).unwrap(); { println!("Clone an updated hmac"); let mut h2 = h1.clone(); h2.write_all(&tests[0].1[p..]).unwrap(); let res = h2.finish().unwrap(); assert_eq!(res, tests[0].2); } h1.write_all(&tests[0].1[p..]).unwrap(); let res = h1.finish().unwrap(); assert_eq!(res, tests[0].2); println!("Clone a finished hmac"); let mut h3 = h1.clone(); h3.write_all(&*tests[1].1).unwrap(); let res = h3.finish().unwrap(); assert_eq!(res, tests[1].2); } #[test] fn test_hmac_sha1() { // test vectors from RFC 2202 let tests: [(Vec, Vec, Vec); 7] = [(repeat(0x0b_u8).take(20).collect(), b"Hi There".to_vec(), "b617318655057264e28bc0b6fb378c8ef146be00".from_hex().unwrap()), (b"Jefe".to_vec(), b"what do ya want for nothing?".to_vec(), "effcdf6ae5eb2fa2d27416d5f184df9c259a7c79".from_hex().unwrap()), (repeat(0xaa_u8).take(20).collect(), repeat(0xdd_u8).take(50).collect(), "125d7342b9ac11cd91a39af48aa17b4f63f175d3".from_hex().unwrap()), ("0102030405060708090a0b0c0d0e0f10111213141516171819".from_hex().unwrap(), repeat(0xcd_u8).take(50).collect(), "4c9007f4026250c6bc8414f9bf50c86c2d7235da".from_hex().unwrap()), (repeat(0x0c_u8).take(20).collect(), b"Test With Truncation".to_vec(), "4c1a03424b55e07fe7f27be1d58bb9324a9a5a04".from_hex().unwrap()), (repeat(0xaa_u8).take(80).collect(), b"Test Using Larger Than Block-Size Key - Hash Key First".to_vec(), "aa4ae5e15272d00e95705637ce8a3b55ed402112".from_hex().unwrap()), (repeat(0xaa_u8).take(80).collect(), b"Test Using Larger Than Block-Size Key \ and Larger Than One Block-Size Data" .to_vec(), "e8e99d0f45237d786d6bbaa7965c7808bbff1a91".from_hex().unwrap())]; test_hmac(SHA1, &tests); } #[test] fn test_hmac_sha1_recycle() { let tests: [(Vec, Vec, Vec); 2] = [(repeat(0xaa_u8).take(80).collect(), b"Test Using Larger Than Block-Size Key - Hash Key First".to_vec(), "aa4ae5e15272d00e95705637ce8a3b55ed402112".from_hex().unwrap()), (repeat(0xaa_u8).take(80).collect(), b"Test Using Larger Than Block-Size Key \ and Larger Than One Block-Size Data" .to_vec(), "e8e99d0f45237d786d6bbaa7965c7808bbff1a91".from_hex().unwrap())]; let mut h = HMAC::new(SHA1, &*tests[0].0).unwrap(); for i in 0..100usize { let test = &tests[i % 2]; test_hmac_recycle(&mut h, test); } } fn test_sha2(ty: Type, results: &[Vec]) { // test vectors from RFC 4231 let tests: [(Vec, Vec); 6] = [(repeat(0xb_u8).take(20).collect(), b"Hi There".to_vec()), (b"Jefe".to_vec(), b"what do ya want for nothing?".to_vec()), (repeat(0xaa_u8).take(20).collect(), repeat(0xdd_u8).take(50).collect()), ("0102030405060708090a0b0c0d0e0f10111213141516171819".from_hex().unwrap(), repeat(0xcd_u8).take(50).collect()), (repeat(0xaa_u8).take(131).collect(), b"Test Using Larger Than Block-Size Key - Hash Key First".to_vec()), (repeat(0xaa_u8).take(131).collect(), b"This is a test using a larger than block-size key and a \ larger than block-size data. The key needs to be hashed \ before being used by the HMAC algorithm." .to_vec())]; for (&(ref key, ref data), res) in tests.iter().zip(results.iter()) { assert_eq!(hmac(ty, &**key, &**data).unwrap(), *res); } // recycle test let mut h = HMAC::new(ty, &*tests[5].0).unwrap(); for i in 0..100usize { let test = &tests[4 + i % 2]; let tup = (test.0.clone(), test.1.clone(), results[4 + i % 2].clone()); test_hmac_recycle(&mut h, &tup); } } #[test] fn test_hmac_sha224() { let results = ["896fb1128abbdf196832107cd49df33f47b4b1169912ba4f53684b22" .from_hex() .unwrap(), "a30e01098bc6dbbf45690f3a7e9e6d0f8bbea2a39e6148008fd05e44" .from_hex() .unwrap(), "7fb3cb3588c6c1f6ffa9694d7d6ad2649365b0c1f65d69d1ec8333ea" .from_hex() .unwrap(), "6c11506874013cac6a2abc1bb382627cec6a90d86efc012de7afec5a" .from_hex() .unwrap(), "95e9a0db962095adaebe9b2d6f0dbce2d499f112f2d2b7273fa6870e" .from_hex() .unwrap(), "3a854166ac5d9f023f54d517d0b39dbd946770db9c2b95c9f6f565d1" .from_hex() .unwrap()]; test_sha2(SHA224, &results); } #[test] fn test_hmac_sha256() { let results = ["b0344c61d8db38535ca8afceaf0bf12b881dc200c9833da726e9376c2e32cff7" .from_hex() .unwrap(), "5bdcc146bf60754e6a042426089575c75a003f089d2739839dec58b964ec3843" .from_hex() .unwrap(), "773ea91e36800e46854db8ebd09181a72959098b3ef8c122d9635514ced565fe" .from_hex() .unwrap(), "82558a389a443c0ea4cc819899f2083a85f0faa3e578f8077a2e3ff46729665b" .from_hex() .unwrap(), "60e431591ee0b67f0d8a26aacbf5b77f8e0bc6213728c5140546040f0ee37f54" .from_hex() .unwrap(), "9b09ffa71b942fcb27635fbcd5b0e944bfdc63644f0713938a7f51535c3a35e2" .from_hex() .unwrap()]; test_sha2(SHA256, &results); } #[test] fn test_hmac_sha384() { let results = ["afd03944d84895626b0825f4ab46907f15f9dadbe4101ec682aa034c7cebc59cfaea9ea90\ 76ede7f4af152e8b2fa9cb6" .from_hex() .unwrap(), "af45d2e376484031617f78d2b58a6b1b9c7ef464f5a01b47e42ec3736322445e8e2240ca5\ e69e2c78b3239ecfab21649" .from_hex() .unwrap(), "88062608d3e6ad8a0aa2ace014c8a86f0aa635d947ac9febe83ef4e55966144b2a5ab39dc\ 13814b94e3ab6e101a34f27" .from_hex() .unwrap(), "3e8a69b7783c25851933ab6290af6ca77a9981480850009cc5577c6e1f573b4e6801dd23c\ 4a7d679ccf8a386c674cffb" .from_hex() .unwrap(), "4ece084485813e9088d2c63a041bc5b44f9ef1012a2b588f3cd11f05033ac4c60c2ef6ab4\ 030fe8296248df163f44952" .from_hex() .unwrap(), "6617178e941f020d351e2f254e8fd32c602420feb0b8fb9adccebb82461e99c5a678cc31e\ 799176d3860e6110c46523e" .from_hex() .unwrap()]; test_sha2(SHA384, &results); } #[test] fn test_hmac_sha512() { let results = ["87aa7cdea5ef619d4ff0b4241a1d6cb02379f4e2ce4ec2787ad0b30545e17cdedaa833b7d\ 6b8a702038b274eaea3f4e4be9d914eeb61f1702e696c203a126854" .from_hex() .unwrap(), "164b7a7bfcf819e2e395fbe73b56e0a387bd64222e831fd610270cd7ea2505549758bf75c\ 05a994a6d034f65f8f0e6fdcaeab1a34d4a6b4b636e070a38bce737" .from_hex() .unwrap(), "fa73b0089d56a284efb0f0756c890be9b1b5dbdd8ee81a3655f83e33b2279d39bf3e84827\ 9a722c806b485a47e67c807b946a337bee8942674278859e13292fb" .from_hex() .unwrap(), "b0ba465637458c6990e5a8c5f61d4af7e576d97ff94b872de76f8050361ee3dba91ca5c11\ aa25eb4d679275cc5788063a5f19741120c4f2de2adebeb10a298dd" .from_hex() .unwrap(), "80b24263c7c1a3ebb71493c1dd7be8b49b46d1f41b4aeec1121b013783f8f3526b56d037e\ 05f2598bd0fd2215d6a1e5295e64f73f63f0aec8b915a985d786598" .from_hex() .unwrap(), "e37b6a775dc87dbaa4dfa9f96e5e3ffddebd71f8867289865df5a32d20cdc944b6022cac3\ c4982b10d5eeb55c3e4de15134676fb6de0446065c97440fa8c6a58" .from_hex() .unwrap()]; test_sha2(SHA512, &results); } }