use libc::c_uint; use std::iter::repeat; use std::io::prelude::*; use std::io; use ffi; /// Message digest (hash) type. #[derive(Copy, Clone)] pub enum Type { MD5, SHA1, SHA224, SHA256, SHA384, SHA512, RIPEMD160 } impl Type { /// Returns the length of the message digest. #[inline] pub fn md_len(&self) -> usize { use self::Type::*; match *self { MD5 => 16, SHA1 => 20, SHA224 => 28, SHA256 => 32, SHA384 => 48, SHA512 => 64, RIPEMD160 => 20, } } /// Internal interface subject to removal. #[inline] pub fn evp_md(&self) -> *const ffi::EVP_MD { unsafe { use self::Type::*; match *self { MD5 => ffi::EVP_md5(), SHA1 => ffi::EVP_sha1(), SHA224 => ffi::EVP_sha224(), SHA256 => ffi::EVP_sha256(), SHA384 => ffi::EVP_sha384(), SHA512 => ffi::EVP_sha512(), RIPEMD160 => ffi::EVP_ripemd160(), } } } } #[derive(PartialEq, Copy, Clone)] enum State { Reset, Updated, Finalized, } use self::State::*; /// Provides message digest (hash) computation. /// /// # Examples /// /// Calculate a hash in one go. /// /// ``` /// use openssl::crypto::hash::{hash, Type}; /// let data = b"\x42\xF4\x97\xE0"; /// let spec = b"\x7c\x43\x0f\x17\x8a\xef\xdf\x14\x87\xfe\xe7\x14\x4e\x96\x41\xe2"; /// let res = hash(Type::MD5, data); /// assert_eq!(res, spec); /// ``` /// /// Use the `Write` trait to supply the input in chunks. /// /// ``` /// use std::io::prelude::*; /// use openssl::crypto::hash::{Hasher, Type}; /// let data = [b"\x42\xF4", b"\x97\xE0"]; /// let spec = b"\x7c\x43\x0f\x17\x8a\xef\xdf\x14\x87\xfe\xe7\x14\x4e\x96\x41\xe2"; /// let mut h = Hasher::new(Type::MD5); /// h.write_all(data[0]); /// h.write_all(data[1]); /// let res = h.finish(); /// assert_eq!(res, spec); /// ``` /// /// # Warning /// /// Don't actually use MD5 and SHA-1 hashes, they're not secure anymore. /// /// Don't ever hash passwords, use `crypto::pkcs5` or bcrypt/scrypt instead. pub struct Hasher { ctx: *mut ffi::EVP_MD_CTX, md: *const ffi::EVP_MD, type_: Type, state: State, } impl Hasher { /// Creates a new `Hasher` with the specified hash type. pub fn new(ty: Type) -> Hasher { ffi::init(); let ctx = unsafe { let r = ffi::EVP_MD_CTX_create(); assert!(!r.is_null()); r }; let md = ty.evp_md(); let mut h = Hasher { ctx: ctx, md: md, type_: ty, state: Finalized }; h.init(); h } #[inline] fn init(&mut self) { match self.state { Reset => return, Updated => { self.finalize(); }, Finalized => (), } unsafe { let r = ffi::EVP_DigestInit_ex(self.ctx, self.md, 0 as *const _); assert_eq!(r, 1); } self.state = Reset; } #[inline] fn update(&mut self, data: &[u8]) { if self.state == Finalized { self.init(); } unsafe { let r = ffi::EVP_DigestUpdate(self.ctx, data.as_ptr(), data.len() as c_uint); assert_eq!(r, 1); } self.state = Updated; } #[inline] fn finalize(&mut self) -> Vec { if self.state == Finalized { self.init(); } let md_len = self.type_.md_len(); let mut res: Vec = repeat(0).take(md_len).collect(); unsafe { let mut len = 0; let r = ffi::EVP_DigestFinal_ex(self.ctx, res.as_mut_ptr(), &mut len); self.state = Finalized; assert_eq!(len as usize, md_len); assert_eq!(r, 1); } res } /// Returns the hash of the data written since creation or /// the last `finish` and resets the hasher. #[inline] pub fn finish(&mut self) -> Vec { self.finalize() } } impl Write for Hasher { #[inline] fn write(&mut self, buf: &[u8]) -> io::Result { self.update(buf); Ok(buf.len()) } fn flush(&mut self) -> io::Result<()> { Ok(()) } } impl Clone for Hasher { fn clone(&self) -> Hasher { let ctx = unsafe { let ctx = ffi::EVP_MD_CTX_create(); assert!(!ctx.is_null()); let r = ffi::EVP_MD_CTX_copy_ex(ctx, self.ctx); assert_eq!(r, 1); ctx }; Hasher { ctx: ctx, md: self.md, type_: self.type_, state: self.state } } } impl Drop for Hasher { fn drop(&mut self) { unsafe { if self.state != Finalized { let mut buf: Vec = repeat(0).take(self.type_.md_len()).collect(); let mut len = 0; ffi::EVP_DigestFinal_ex(self.ctx, buf.as_mut_ptr(), &mut len); } ffi::EVP_MD_CTX_destroy(self.ctx); } } } /// Computes the hash of the `data` with the hash `t`. pub fn hash(t: Type, data: &[u8]) -> Vec { let mut h = Hasher::new(t); let _ = h.write_all(data); h.finish() } #[cfg(test)] mod tests { use serialize::hex::{FromHex, ToHex}; use super::{hash, Hasher, Type}; use std::io::prelude::*; fn hash_test(hashtype: Type, hashtest: &(&str, &str)) { let res = hash(hashtype, &*hashtest.0.from_hex().unwrap()); assert_eq!(res.to_hex(), hashtest.1); } fn hash_recycle_test(h: &mut Hasher, hashtest: &(&str, &str)) { let _ = h.write_all(&*hashtest.0.from_hex().unwrap()); let res = h.finish(); assert_eq!(res.to_hex(), hashtest.1); } // Test vectors from http://www.nsrl.nist.gov/testdata/ #[allow(non_upper_case_globals)] const md5_tests: [(&'static str, &'static str); 13] = [ ("", "d41d8cd98f00b204e9800998ecf8427e"), ("7F", "83acb6e67e50e31db6ed341dd2de1595"), ("EC9C", "0b07f0d4ca797d8ac58874f887cb0b68"), ("FEE57A", "e0d583171eb06d56198fc0ef22173907"), ("42F497E0", "7c430f178aefdf1487fee7144e9641e2"), ("C53B777F1C", "75ef141d64cb37ec423da2d9d440c925"), ("89D5B576327B", "ebbaf15eb0ed784c6faa9dc32831bf33"), ("5D4CCE781EB190", "ce175c4b08172019f05e6b5279889f2c"), ("81901FE94932D7B9", "cd4d2f62b8cdb3a0cf968a735a239281"), ("C9FFDEE7788EFB4EC9", "e0841a231ab698db30c6c0f3f246c014"), ("66AC4B7EBA95E53DC10B", "a3b3cea71910d9af56742aa0bb2fe329"), ("A510CD18F7A56852EB0319", "577e216843dd11573574d3fb209b97d8"), ("AAED18DBE8938C19ED734A8D", "6f80fb775f27e0a4ce5c2f42fc72c5f1") ]; #[test] fn test_md5() { for test in md5_tests.iter() { hash_test(Type::MD5, test); } } #[test] fn test_md5_recycle() { let mut h = Hasher::new(Type::MD5); for test in md5_tests.iter() { hash_recycle_test(&mut h, test); } } #[test] fn test_finish_twice() { let mut h = Hasher::new(Type::MD5); let _ = h.write_all(&*md5_tests[6].0.from_hex().unwrap()); let _ = h.finish(); let res = h.finish(); let null = hash(Type::MD5, &[]); assert_eq!(res, null); } #[test] fn test_clone() { let i = 7; let inp = md5_tests[i].0.from_hex().unwrap(); assert!(inp.len() > 2); let p = inp.len() / 2; let h0 = Hasher::new(Type::MD5); println!("Clone a new hasher"); let mut h1 = h0.clone(); let _ = h1.write_all(&inp[..p]); { println!("Clone an updated hasher"); let mut h2 = h1.clone(); let _ = h2.write_all(&inp[p..]); let res = h2.finish(); assert_eq!(res.to_hex(), md5_tests[i].1); } let _ = h1.write_all(&inp[p..]); let res = h1.finish(); assert_eq!(res.to_hex(), md5_tests[i].1); println!("Clone a finished hasher"); let mut h3 = h1.clone(); let _ = h3.write_all(&*md5_tests[i + 1].0.from_hex().unwrap()); let res = h3.finish(); assert_eq!(res.to_hex(), md5_tests[i + 1].1); } #[test] fn test_sha1() { let tests = [ ("616263", "a9993e364706816aba3e25717850c26c9cd0d89d"), ]; for test in tests.iter() { hash_test(Type::SHA1, test); } } #[test] fn test_sha256() { let tests = [ ("616263", "ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad") ]; for test in tests.iter() { hash_test(Type::SHA256, test); } } #[test] fn test_ripemd160() { let tests = [ ("616263", "8eb208f7e05d987a9b044a8e98c6b087f15a0bfc") ]; for test in tests.iter() { hash_test(Type::RIPEMD160, test); } } }