Merge pull request #761 from AndyGauge/doc-ec

Doc ec module
This commit is contained in:
Steven Fackler 2017-11-04 11:50:22 -07:00 committed by GitHub
commit f79d92dd67
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 212 additions and 4 deletions

View File

@ -1,3 +1,36 @@
//! Elliptic Curve
//!
//! Cryptology relies on the difficulty of solving mathematical problems, such as the factor
//! of large integers composed of two large prime numbers and the discrete logarithm of a
//! random eliptic curve. This module provides low-level features of the latter.
//! Elliptic Curve protocols can provide the same security with smaller keys.
//!
//! There are 2 forms of elliptic curves, `Fp` and `F2^m`. These curves use irreducible
//! trinomial or pentanomial . Being a generic interface to a wide range of algorithms,
//! the cuves are generally referenced by [`EcGroup`]. There are many built in groups
//! found in [`Nid`].
//!
//! OpenSSL Wiki explains the fields and curves in detail at [Eliptic Curve Cryptography].
//!
//! [`EcGroup`]: struct.EcGroup.html
//! [`Nid`]: ../nid/struct.Nid.html
//! [Eliptic Curve Cryptography]: https://wiki.openssl.org/index.php/Elliptic_Curve_Cryptography
//!
//! # Examples
//!
//! ```
//! use openssl::ec::{EcGroup, EcPoint};
//! use openssl::nid;
//! use openssl::error::ErrorStack;
//! fn get_ec_point() -> Result< EcPoint, ErrorStack > {
//! let group = EcGroup::from_curve_name(nid::SECP224R1)?;
//! let point = EcPoint::new(&group)?;
//! Ok(point)
//! }
//! # fn main() {
//! # let _ = get_ec_point();
//! # }
//! ```
use ffi;
use foreign_types::{ForeignType, ForeignTypeRef};
use std::ptr;
@ -9,23 +42,59 @@ use bn::{BigNumRef, BigNumContextRef};
use error::ErrorStack;
use nid::Nid;
/// Compressed conversion from point value (Default)
pub const POINT_CONVERSION_COMPRESSED: PointConversionForm =
PointConversionForm(ffi::point_conversion_form_t::POINT_CONVERSION_COMPRESSED);
/// Uncompressed conversion from point value (Binary curve default)
pub const POINT_CONVERSION_UNCOMPRESSED: PointConversionForm =
PointConversionForm(ffi::point_conversion_form_t::POINT_CONVERSION_UNCOMPRESSED);
/// Performs both compressed and uncompressed conversions
pub const POINT_CONVERSION_HYBRID: PointConversionForm =
PointConversionForm(ffi::point_conversion_form_t::POINT_CONVERSION_HYBRID);
// OPENSSL_EC_EXPLICIT_CURVE, but that was only added in 1.1.
// Man page documents that 0 can be used in older versions.
/// Curve defined using polynomial parameters
///
/// Most applications use a named EC_GROUP curve, however, support
/// is included to explicitly define the curve used to calculate keys
/// This information would need to be known by both endpoint to make communication
/// effective.
///
/// OPENSSL_EC_EXPLICIT_CURVE, but that was only added in 1.1.
/// Man page documents that 0 can be used in older versions.
///
/// OpenSSL documentation at [`EC_GROUP`]
///
/// [`EC_GROUP`]: https://www.openssl.org/docs/man1.1.0/crypto/EC_GROUP_get_seed_len.html
pub const EXPLICIT_CURVE: Asn1Flag = Asn1Flag(0);
/// Standard Curves
///
/// Curves that make up the typical encryption use cases. The collection of curves
/// are well known but extensible.
///
/// OpenSSL documentation at [`EC_GROUP`]
///
/// [`EC_GROUP`]: https://www.openssl.org/docs/manmaster/man3/EC_GROUP_order_bits.html
pub const NAMED_CURVE: Asn1Flag = Asn1Flag(ffi::OPENSSL_EC_NAMED_CURVE);
/// Compressed or Uncompressed conversion
///
/// Conversion from the binary value of the point on the curve is performed in one of
/// compressed, uncompressed, or hybrid conversions. The default is compressed, except
/// for binary curves.
///
/// Further documentation is available in the [X9.62] standard.
///
/// [X9.62]: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.202.2977&rep=rep1&type=pdf
#[derive(Copy, Clone)]
pub struct PointConversionForm(ffi::point_conversion_form_t);
/// Named Curve or Explicit
///
/// This type acts as a boolean as to whether the EC_Group is named or
/// explicit.
#[derive(Copy, Clone)]
pub struct Asn1Flag(c_int);
@ -33,12 +102,35 @@ foreign_type! {
type CType = ffi::EC_GROUP;
fn drop = ffi::EC_GROUP_free;
/// Describes the curve
///
/// A curve can be of the named curve type. These curves can be discovered
/// using openssl binary `openssl ecparam -list_curves`. Other operations
/// are available in the [wiki]. These named curves are available in the
/// [`Nid`] module.
///
/// Curves can also be generated using prime field parameters or a binary field.
///
/// Prime fields use the formula `y^2 mod p = x^3 + ax + b mod p`. Binary
/// fields use the formula `y^2 + xy = x^3 + ax^2 + b`. Named curves have
/// assured security. To prevent accidental vulnerabilities, they should
/// be prefered.
///
/// [wiki]: https://wiki.openssl.org/index.php/Command_Line_Elliptic_Curve_Operations
/// [`Nid`]: ../nid/index.html
pub struct EcGroup;
/// Reference to [`EcGroup`]
///
/// [`EcGroup`]: struct.EcGroup.html
pub struct EcGroupRef;
}
impl EcGroup {
/// Returns the group of a standard named curve.
///
/// OpenSSL documentation at [`EC_GROUP_new`].
///
/// [`EC_GROUP_new`]: https://www.openssl.org/docs/man1.1.0/crypto/EC_GROUP_new.html
pub fn from_curve_name(nid: Nid) -> Result<EcGroup, ErrorStack> {
unsafe {
init();
@ -49,6 +141,11 @@ impl EcGroup {
impl EcGroupRef {
/// Places the components of a curve over a prime field in the provided `BigNum`s.
/// The components make up the formula `y^2 mod p = x^3 + ax + b mod p`.
///
/// OpenSSL documentation available at [`EC_GROUP_get_curve_GFp`]
///
/// [`EC_GROUP_get_curve_GFp`]: https://www.openssl.org/docs/man1.1.0/crypto/EC_GROUP_get_curve_GFp.html
pub fn components_gfp(
&self,
p: &mut BigNumRef,
@ -68,6 +165,15 @@ impl EcGroupRef {
}
/// Places the components of a curve over a binary field in the provided `BigNum`s.
/// The components make up the formula `y^2 + xy = x^3 + ax^2 + b`.
///
/// In this form `p` relates to the irreducible polynomial. Each bit represents
/// a term in the polynomial. It will be set to 3 `1`s or 5 `1`s depending on
/// using a trinomial or pentanomial.
///
/// OpenSSL documentation at [`EC_GROUP_get_curve_GF2m`].
///
/// [`EC_GROUP_get_curve_GF2m`]: https://www.openssl.org/docs/man1.1.0/crypto/EC_GROUP_get_curve_GF2m.html
#[cfg(not(osslconf = "OPENSSL_NO_EC2M"))]
pub fn components_gf2m(
&self,
@ -88,11 +194,19 @@ impl EcGroupRef {
}
/// Returns the degree of the curve.
///
/// OpenSSL documentation at [`EC_GROUP_get_degree`]
///
/// [`EC_GROUP_get_degree`]: https://www.openssl.org/docs/man1.1.0/crypto/EC_GROUP_get_degree.html
pub fn degree(&self) -> u32 {
unsafe { ffi::EC_GROUP_get_degree(self.as_ptr()) as u32 }
}
/// Places the order of the curve in the provided `BigNum`.
///
/// OpenSSL documentation at [`EC_GROUP_get_order`]
///
/// [`EC_GROUP_get_order`]: https://www.openssl.org/docs/man1.1.0/crypto/EC_GROUP_get_order.html
pub fn order(
&self,
order: &mut BigNumRef,
@ -123,12 +237,24 @@ foreign_type! {
type CType = ffi::EC_POINT;
fn drop = ffi::EC_POINT_free;
/// Represents a point on the curve
///
/// OpenSSL documentation at [`EC_POINT_new`]
///
/// [`EC_POINT_new`]: https://www.openssl.org/docs/man1.1.0/crypto/EC_POINT_new.html
pub struct EcPoint;
/// Reference to [`EcPoint`]
///
/// [`EcPoint`]: struct.EcPoint.html
pub struct EcPointRef;
}
impl EcPointRef {
/// Computes `a + b`, storing the result in `self`.
///
/// OpenSSL documentation at [`EC_POINT_add`]
///
/// [`EC_POINT_add`]: https://www.openssl.org/docs/man1.1.0/crypto/EC_POINT_add.html
pub fn add(
&mut self,
group: &EcGroupRef,
@ -148,6 +274,10 @@ impl EcPointRef {
}
/// Computes `q * m`, storing the result in `self`.
///
/// OpenSSL documentation at [`EC_POINT_mul`]
///
/// [`EC_POINT_mul`]: https://www.openssl.org/docs/man1.1.0/crypto/EC_POINT_mul.html
pub fn mul(
&mut self,
group: &EcGroupRef,
@ -208,6 +338,10 @@ impl EcPointRef {
}
/// Inverts `self`.
///
/// OpenSSL documentation at [`EC_POINT_invert`]
///
/// [`EC_POINT_invert`]: https://www.openssl.org/docs/man1.1.0/crypto/EC_POINT_invert.html
pub fn invert(&mut self, group: &EcGroupRef, ctx: &BigNumContextRef) -> Result<(), ErrorStack> {
unsafe {
cvt(ffi::EC_POINT_invert(
@ -219,6 +353,10 @@ impl EcPointRef {
}
/// Serializes the point to a binary representation.
///
/// OpenSSL documentation at [`EC_POINT_point2oct`]
///
/// [`EC_POINT_point2oct`]: https://www.openssl.org/docs/man1.1.0/crypto/EC_POINT_point2oct.html
pub fn to_bytes(
&self,
group: &EcGroupRef,
@ -255,6 +393,10 @@ impl EcPointRef {
}
/// Determines if this point is equal to another.
///
/// OpenSSL doucmentation at [`EC_POINT_cmp`]
///
/// [`EC_POINT_cmp`]: https://www.openssl.org/docs/man1.1.0/crypto/EC_POINT_cmp.html
pub fn eq(
&self,
group: &EcGroupRef,
@ -272,7 +414,12 @@ impl EcPointRef {
}
}
/// Place affine coordinates of a curve over a prime field in the provided x and y BigNum's
/// Place affine coordinates of a curve over a prime field in the provided
/// `x` and `y` `BigNum`s
///
/// OpenSSL documentation at [`EC_POINT_get_affine_coordinates_GFp`]
///
/// [`EC_POINT_get_affine_coordinates_GFp`]: https://www.openssl.org/docs/man1.1.0/crypto/EC_POINT_get_affine_coordinates_GFp.html
pub fn affine_coordinates_gfp(
&self,
group: &EcGroupRef,
@ -291,7 +438,12 @@ impl EcPointRef {
}
}
/// Place affine coordinates of a curve over a binary field in the provided x and y BigNum's
/// Place affine coordinates of a curve over a binary field in the provided
/// `x` and `y` `BigNum`s
///
/// OpenSSL documentation at [`EC_POINT_get_affine_coordinates_GF2m`]
///
/// [`EC_POINT_get_affine_coordinates_GF2m`]: https://www.openssl.org/docs/man1.1.0/crypto/EC_POINT_get_affine_coordinates_GF2m.html
#[cfg(not(osslconf = "OPENSSL_NO_EC2M"))]
pub fn affine_coordinates_gf2m(
&self,
@ -314,10 +466,19 @@ impl EcPointRef {
impl EcPoint {
/// Creates a new point on the specified curve.
///
/// OpenSSL documentation at [`EC_POINT_new`]
///
/// [`EC_POINT_new`]: https://www.openssl.org/docs/man1.1.0/crypto/EC_POINT_new.html
pub fn new(group: &EcGroupRef) -> Result<EcPoint, ErrorStack> {
unsafe { cvt_p(ffi::EC_POINT_new(group.as_ptr())).map(EcPoint) }
}
/// Creates point from a binary representation
///
/// OpenSSL documentation at [`EC_POINT_oct2point`]
///
/// [`EC_POINT_oct2point`]: https://www.openssl.org/docs/man1.1.0/crypto/EC_POINT_oct2point.html
pub fn from_bytes(
group: &EcGroupRef,
buf: &[u8],
@ -341,7 +502,15 @@ foreign_type! {
type CType = ffi::EC_KEY;
fn drop = ffi::EC_KEY_free;
/// Public and optional Private key on the given curve
///
/// OpenSSL documentation at [`EC_KEY_new`]
///
/// [`EC_KEY_new`]: https://www.openssl.org/docs/man1.1.0/crypto/EC_KEY_new.html
pub struct EcKey;
/// Reference to [`EcKey`]
///
/// [`EcKey`]: struct.EcKey.html
pub struct EcKeyRef;
}
@ -349,6 +518,11 @@ impl EcKeyRef {
private_key_to_pem!(ffi::PEM_write_bio_ECPrivateKey);
private_key_to_der!(ffi::i2d_ECPrivateKey);
/// Return [`EcGroup`] of the `EcKey`
///
/// OpenSSL documentation at [`EC_KEY_get0_group`]
///
/// [`EC_KEY_get0_group`]: https://www.openssl.org/docs/man1.1.0/crypto/EC_KEY_get0_group.html
pub fn group(&self) -> Option<&EcGroupRef> {
unsafe {
let ptr = ffi::EC_KEY_get0_group(self.as_ptr());
@ -360,6 +534,11 @@ impl EcKeyRef {
}
}
/// Return [`EcPoint`] associated with the public key
///
/// OpenSSL documentation at [`EC_KEY_get0_pubic_key`]
///
/// [`EC_KEY_get0_pubic_key`]: https://www.openssl.org/docs/man1.1.0/crypto/EC_KEY_get0_public_key.html
pub fn public_key(&self) -> Option<&EcPointRef> {
unsafe {
let ptr = ffi::EC_KEY_get0_public_key(self.as_ptr());
@ -371,6 +550,11 @@ impl EcKeyRef {
}
}
/// Return [`EcPoint`] associated with the private key
///
/// OpenSSL documentation at [`EC_KEY_get0_private_key`]
///
/// [`EC_KEY_get0_private_key`]: https://www.openssl.org/docs/man1.1.0/crypto/EC_KEY_get0_private_key.html
pub fn private_key(&self) -> Option<&BigNumRef> {
unsafe {
let ptr = ffi::EC_KEY_get0_private_key(self.as_ptr());
@ -383,10 +567,15 @@ impl EcKeyRef {
}
/// Checks the key for validity.
///
/// OpenSSL documenation at [`EC_KEY_check_key`]
///
/// [`EC_KEY_check_key`]: https://www.openssl.org/docs/man1.1.0/crypto/EC_KEY_check_key.html
pub fn check_key(&self) -> Result<(), ErrorStack> {
unsafe { cvt(ffi::EC_KEY_check_key(self.as_ptr())).map(|_| ()) }
}
/// Create a copy of the `EcKey` to allow modification
pub fn to_owned(&self) -> Result<EcKey, ErrorStack> {
unsafe { cvt_p(ffi::EC_KEY_dup(self.as_ptr())).map(EcKey) }
}
@ -397,6 +586,10 @@ impl EcKey {
///
/// It will not have an associated public or private key. This kind of key is primarily useful
/// to be provided to the `set_tmp_ecdh` methods on `Ssl` and `SslContextBuilder`.
///
/// OpenSSL documenation at [`EC_KEY_new_by_curve_name`]
///
/// [`EC_KEY_new_by_curve_name`]: https://www.openssl.org/docs/man1.1.0/crypto/EC_KEY_new_by_curve_name.html
pub fn from_curve_name(nid: Nid) -> Result<EcKey, ErrorStack> {
unsafe {
init();
@ -457,11 +650,18 @@ foreign_type! {
type CType = ffi::EC_KEY;
fn drop = ffi::EC_KEY_free;
/// Builder pattern for key generation
///
/// Returns a `EcKeyBuilder` to be consumed by `build`
pub struct EcKeyBuilder;
/// Reference to [`EcKeyBuilder`]
///
/// [`EcKeyBuilder`]: struct.EcKeyBuilder.html
pub struct EcKeyBuilderRef;
}
impl EcKeyBuilder {
/// Creates an empty `EcKeyBuilder` to be chained with additonal methods
pub fn new() -> Result<EcKeyBuilder, ErrorStack> {
unsafe {
init();
@ -469,6 +669,9 @@ impl EcKeyBuilder {
}
}
/// Consume the `EcKeyBuilder` and return [`EcKey`]
///
/// [`EcKey`]: struct.EcKey.html
pub fn build(self) -> EcKey {
unsafe {
let key = EcKey::from_ptr(self.as_ptr());
@ -479,10 +682,14 @@ impl EcKeyBuilder {
}
impl EcKeyBuilderRef {
/// Set the [`EcGroup`] explicitly
///
/// [`EcGroup`]: struct.EcGroup.html
pub fn set_group(&mut self, group: &EcGroupRef) -> Result<&mut EcKeyBuilderRef, ErrorStack> {
unsafe { cvt(ffi::EC_KEY_set_group(self.as_ptr(), group.as_ptr())).map(|_| self) }
}
/// Set public key to given `EcPoint`
pub fn set_public_key(
&mut self,
public_key: &EcPointRef,
@ -495,6 +702,7 @@ impl EcKeyBuilderRef {
}
}
/// Generate public and private keys.
pub fn generate_key(&mut self) -> Result<&mut EcKeyBuilderRef, ErrorStack> {
unsafe { cvt(ffi::EC_KEY_generate_key(self.as_ptr())).map(|_| self) }
}