symm reform

This commit is contained in:
Steven Fackler 2016-08-08 23:10:03 -07:00
parent 522447378e
commit a8224d199b
2 changed files with 148 additions and 105 deletions

View File

@ -766,10 +766,17 @@ extern "C" {
pub fn EVP_CIPHER_CTX_new() -> *mut EVP_CIPHER_CTX;
pub fn EVP_CIPHER_CTX_set_padding(ctx: *mut EVP_CIPHER_CTX, padding: c_int) -> c_int;
pub fn EVP_CIPHER_CTX_set_key_length(ctx: *mut EVP_CIPHER_CTX, keylen: c_int) -> c_int;
pub fn EVP_CIPHER_CTX_free(ctx: *mut EVP_CIPHER_CTX);
pub fn EVP_CipherInit(ctx: *mut EVP_CIPHER_CTX, evp: *const EVP_CIPHER,
key: *const u8, iv: *const u8, mode: c_int) -> c_int;
pub fn EVP_CipherInit_ex(ctx: *mut EVP_CIPHER_CTX,
type_: *const EVP_CIPHER,
impl_: *mut ENGINE,
key: *mut c_uchar,
iv: *mut c_uchar,
enc: c_int) -> c_int;
pub fn EVP_CipherUpdate(ctx: *mut EVP_CIPHER_CTX, outbuf: *mut u8,
outlen: &mut c_int, inbuf: *const u8, inlen: c_int) -> c_int;
pub fn EVP_CipherFinal(ctx: *mut EVP_CIPHER_CTX, res: *mut u8, len: &mut c_int) -> c_int;

View File

@ -1,8 +1,10 @@
use std::iter::repeat;
use std::cmp;
use std::ptr;
use libc::c_int;
use ffi;
use error::ErrorStack;
#[derive(Copy, Clone)]
pub enum Mode {
Encrypt,
@ -110,90 +112,110 @@ impl Type {
/// Represents a symmetric cipher context.
pub struct Crypter {
evp: *const ffi::EVP_CIPHER,
ctx: *mut ffi::EVP_CIPHER_CTX,
keylen: usize,
blocksize: usize,
block_size: usize,
}
impl Crypter {
pub fn new(t: Type) -> Crypter {
pub fn new(t: Type, mode: Mode, key: &[u8], iv: Option<&[u8]>) -> Result<Crypter, ErrorStack> {
ffi::init();
let ctx = unsafe { ffi::EVP_CIPHER_CTX_new() };
Crypter {
evp: t.as_ptr(),
ctx: ctx,
keylen: t.key_len(),
blocksize: t.block_size(),
}
}
/**
* Enables or disables padding. If padding is disabled, total amount of
* data encrypted must be a multiple of block size.
*/
pub fn pad(&self, padding: bool) {
if self.blocksize > 0 {
unsafe {
let v = if padding {
1 as c_int
} else {
0
};
ffi::EVP_CIPHER_CTX_set_padding(self.ctx, v);
}
}
}
/**
* Initializes this crypter.
*/
pub fn init(&self, mode: Mode, key: &[u8], iv: &[u8]) {
unsafe {
let mode = match mode {
Mode::Encrypt => 1 as c_int,
Mode::Decrypt => 0 as c_int,
let ctx = try_ssl_null!(ffi::EVP_CIPHER_CTX_new());
let crypter = Crypter {
ctx: ctx,
block_size: t.block_size(),
};
assert_eq!(key.len(), self.keylen as usize);
ffi::EVP_CipherInit(self.ctx, self.evp, key.as_ptr(), iv.as_ptr(), mode);
let mode = match mode {
Mode::Encrypt => 1,
Mode::Decrypt => 0,
};
try_ssl!(ffi::EVP_CipherInit_ex(crypter.ctx,
t.as_ptr(),
ptr::null_mut(),
ptr::null_mut(),
ptr::null_mut(),
mode));
assert!(key.len() <= c_int::max_value() as usize);
try_ssl!(ffi::EVP_CIPHER_CTX_set_key_length(crypter.ctx, key.len() as c_int));
let key = key.as_ptr() as *mut _;
let iv = match (iv, t.iv_len()) {
(Some(iv), Some(len)) => {
assert!(iv.len() == len);
iv.as_ptr() as *mut _
}
(Some(_), None) | (None, None) => ptr::null_mut(),
(None, Some(_)) => panic!("an IV is required for this cipher"),
};
try_ssl!(ffi::EVP_CipherInit_ex(crypter.ctx,
ptr::null(),
ptr::null_mut(),
key,
iv,
mode));
Ok(crypter)
}
}
/**
* Update this crypter with more data to encrypt or decrypt. Returns
* encrypted or decrypted bytes.
*/
pub fn update(&self, data: &[u8]) -> Vec<u8> {
/// Enables or disables padding.
///
/// If padding is disabled, total amount of data encrypted/decrypted must
/// be a multiple of the cipher's block size.
pub fn pad(&mut self, padding: bool) {
unsafe { ffi::EVP_CIPHER_CTX_set_padding(self.ctx, padding as c_int); }
}
/// Feeds data from `input` through the cipher, writing encrypted/decrypted
/// bytes into `output`.
///
/// The number of bytes written to `output` is returned. Note that this may
/// not be equal to the length of `input`.
///
/// # Panics
///
/// Panics if `output.len() < input.len() + block_size - 1` where
/// `block_size` is the block size of the cipher (see `Type::block_size`),
/// or if `output.len() > c_int::max_value()`.
pub fn update(&mut self, input: &[u8], output: &mut [u8]) -> Result<usize, ErrorStack> {
unsafe {
let sum = data.len() + (self.blocksize as usize);
let mut res = repeat(0u8).take(sum).collect::<Vec<_>>();
let mut reslen = sum as c_int;
assert!(output.len() >= input.len() + self.block_size - 1);
assert!(output.len() <= c_int::max_value() as usize);
let mut outl = output.len() as c_int;
let inl = input.len() as c_int;
ffi::EVP_CipherUpdate(self.ctx,
res.as_mut_ptr(),
&mut reslen,
data.as_ptr(),
data.len() as c_int);
try_ssl!(ffi::EVP_CipherUpdate(self.ctx,
output.as_mut_ptr(),
&mut outl,
input.as_ptr(),
inl));
res.truncate(reslen as usize);
res
Ok(outl as usize)
}
}
/**
* Finish crypting. Returns the remaining partial block of output, if any.
*/
pub fn finalize(&self) -> Vec<u8> {
/// Finishes the encryption/decryption process, writing any remaining data
/// to `output`.
///
/// The number of bytes written to `output` is returned.
///
/// `update` should not be called after this method.
///
/// # Panics
///
/// Panics if `output` is less than the cipher's block size.
pub fn finalize(&mut self, output: &mut [u8]) -> Result<usize, ErrorStack> {
unsafe {
let mut res = repeat(0u8).take(self.blocksize as usize).collect::<Vec<_>>();
let mut reslen = self.blocksize as c_int;
assert!(output.len() >= self.block_size);
let mut outl = cmp::min(output.len(), c_int::max_value() as usize) as c_int;
ffi::EVP_CipherFinal(self.ctx, res.as_mut_ptr(), &mut reslen);
try_ssl!(ffi::EVP_CipherFinal(self.ctx, output.as_mut_ptr(), &mut outl));
res.truncate(reslen as usize);
res
Ok(outl as usize)
}
}
}
@ -210,31 +232,35 @@ impl Drop for Crypter {
* Encrypts data, using the specified crypter type in encrypt mode with the
* specified key and iv; returns the resulting (encrypted) data.
*/
pub fn encrypt(t: Type, key: &[u8], iv: &[u8], data: &[u8]) -> Vec<u8> {
let c = Crypter::new(t);
c.init(Mode::Encrypt, key, iv);
let mut r = c.update(data);
let rest = c.finalize();
r.extend(rest.into_iter());
r
pub fn encrypt(t: Type, key: &[u8], iv: Option<&[u8]>, data: &[u8]) -> Result<Vec<u8>, ErrorStack> {
cipher(t, Mode::Encrypt, key, iv, data)
}
/**
* Decrypts data, using the specified crypter type in decrypt mode with the
* specified key and iv; returns the resulting (decrypted) data.
*/
pub fn decrypt(t: Type, key: &[u8], iv: &[u8], data: &[u8]) -> Vec<u8> {
let c = Crypter::new(t);
c.init(Mode::Decrypt, key, iv);
let mut r = c.update(data);
let rest = c.finalize();
r.extend(rest.into_iter());
r
pub fn decrypt(t: Type, key: &[u8], iv: Option<&[u8]>, data: &[u8]) -> Result<Vec<u8>, ErrorStack> {
cipher(t, Mode::Decrypt, key, iv, data)
}
fn cipher(t: Type,
mode: Mode,
key: &[u8],
iv: Option<&[u8]>,
data: &[u8])
-> Result<Vec<u8>, ErrorStack> {
let mut c = try!(Crypter::new(t, mode, key, iv));
let mut out = vec![0; data.len() + t.block_size()];
let count = try!(c.update(data, &mut out));
let rest = try!(c.finalize(&mut out[count..]));
out.truncate(count + rest);
Ok(out)
}
#[cfg(test)]
mod tests {
use serialize::hex::FromHex;
use serialize::hex::{FromHex, ToHex};
// Test vectors from FIPS-197:
// http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
@ -248,25 +274,33 @@ mod tests {
0xaau8, 0xbbu8, 0xccu8, 0xddu8, 0xeeu8, 0xffu8];
let c0 = [0x8eu8, 0xa2u8, 0xb7u8, 0xcau8, 0x51u8, 0x67u8, 0x45u8, 0xbfu8, 0xeau8, 0xfcu8,
0x49u8, 0x90u8, 0x4bu8, 0x49u8, 0x60u8, 0x89u8];
let c = super::Crypter::new(super::Type::AES_256_ECB);
c.init(super::Mode::Encrypt, &k0, &[]);
let mut c = super::Crypter::new(super::Type::AES_256_ECB,
super::Mode::Encrypt,
&k0,
None).unwrap();
c.pad(false);
let mut r0 = c.update(&p0);
r0.extend(c.finalize().into_iter());
assert!(r0 == c0);
c.init(super::Mode::Decrypt, &k0, &[]);
let mut r0 = vec![0; c0.len() + super::Type::AES_256_ECB.block_size()];
let count = c.update(&p0, &mut r0).unwrap();
let rest = c.finalize(&mut r0[count..]).unwrap();
r0.truncate(count + rest);
assert_eq!(r0.to_hex(), c0.to_hex());
let mut c = super::Crypter::new(super::Type::AES_256_ECB,
super::Mode::Decrypt,
&k0,
None).unwrap();
c.pad(false);
let mut p1 = c.update(&r0);
p1.extend(c.finalize().into_iter());
assert!(p1 == p0);
let mut p1 = vec![0; r0.len() + super::Type::AES_256_ECB.block_size()];
let count = c.update(&r0, &mut p1).unwrap();
let rest = c.finalize(&mut p1[count..]).unwrap();
p1.truncate(count + rest);
assert_eq!(p1.to_hex(), p0.to_hex());
}
#[test]
fn test_aes_256_cbc_decrypt() {
let cr = super::Crypter::new(super::Type::AES_256_CBC);
let iv = [4_u8, 223_u8, 153_u8, 219_u8, 28_u8, 142_u8, 234_u8, 68_u8, 227_u8, 69_u8,
98_u8, 107_u8, 208_u8, 14_u8, 236_u8, 60_u8, 0_u8, 0_u8, 0_u8, 0_u8, 0_u8, 0_u8,
0_u8, 0_u8, 0_u8, 0_u8, 0_u8, 0_u8, 0_u8, 0_u8, 0_u8, 0_u8];
98_u8, 107_u8, 208_u8, 14_u8, 236_u8, 60_u8];
let data = [143_u8, 210_u8, 75_u8, 63_u8, 214_u8, 179_u8, 155_u8, 241_u8, 242_u8, 31_u8,
154_u8, 56_u8, 198_u8, 145_u8, 192_u8, 64_u8, 2_u8, 245_u8, 167_u8, 220_u8,
55_u8, 119_u8, 233_u8, 136_u8, 139_u8, 27_u8, 71_u8, 242_u8, 119_u8, 175_u8,
@ -274,29 +308,31 @@ mod tests {
let ciphered_data = [0x4a_u8, 0x2e_u8, 0xe5_u8, 0x6_u8, 0xbf_u8, 0xcf_u8, 0xf2_u8,
0xd7_u8, 0xea_u8, 0x2d_u8, 0xb1_u8, 0x85_u8, 0x6c_u8, 0x93_u8,
0x65_u8, 0x6f_u8];
cr.init(super::Mode::Decrypt, &data, &iv);
let mut cr = super::Crypter::new(super::Type::AES_256_CBC,
super::Mode::Decrypt,
&data,
Some(&iv)).unwrap();
cr.pad(false);
let unciphered_data_1 = cr.update(&ciphered_data);
let unciphered_data_2 = cr.finalize();
let mut unciphered_data = vec![0; data.len() + super::Type::AES_256_CBC.block_size()];
let count = cr.update(&ciphered_data, &mut unciphered_data).unwrap();
let rest = cr.finalize(&mut unciphered_data[count..]).unwrap();
unciphered_data.truncate(count + rest);
let expected_unciphered_data = b"I love turtles.\x01";
assert!(unciphered_data_2.len() == 0);
assert_eq!(&unciphered_data_1, expected_unciphered_data);
assert_eq!(&unciphered_data, expected_unciphered_data);
}
fn cipher_test(ciphertype: super::Type, pt: &str, ct: &str, key: &str, iv: &str) {
use serialize::hex::ToHex;
let cipher = super::Crypter::new(ciphertype);
cipher.init(super::Mode::Encrypt,
&key.from_hex().unwrap(),
&iv.from_hex().unwrap());
let pt = pt.from_hex().unwrap();
let ct = ct.from_hex().unwrap();
let key = key.from_hex().unwrap();
let iv = iv.from_hex().unwrap();
let expected = ct.from_hex().unwrap();
let mut computed = cipher.update(&pt.from_hex().unwrap());
computed.extend(cipher.finalize().into_iter());
let computed = super::decrypt(ciphertype, &key, Some(&iv), &ct).unwrap();
let expected = pt;
if computed != expected {
println!("Computed: {}", computed.to_hex());