Update for Rust 0.6

Also disable AES_128_CTR and AES_256_CTR because they cause link
failures on OS X.
This commit is contained in:
Kevin Ballard 2013-04-20 01:12:03 -07:00
parent 1cb2f63ad4
commit 9d09a98664
7 changed files with 405 additions and 333 deletions

31
hash.rs
View File

@ -1,4 +1,4 @@
use libc::c_uint; use core::libc::c_uint;
pub enum HashType { pub enum HashType {
MD5, MD5,
@ -10,10 +10,10 @@ pub enum HashType {
} }
#[allow(non_camel_case_types)] #[allow(non_camel_case_types)]
type EVP_MD_CTX = *libc::c_void; pub type EVP_MD_CTX = *libc::c_void;
#[allow(non_camel_case_types)] #[allow(non_camel_case_types)]
type EVP_MD = *libc::c_void; pub type EVP_MD = *libc::c_void;
#[link_name = "crypto"] #[link_name = "crypto"]
#[abi = "cdecl"] #[abi = "cdecl"]
@ -32,7 +32,8 @@ extern mod libcrypto {
fn EVP_DigestFinal(ctx: EVP_MD_CTX, res: *mut u8, n: *u32); fn EVP_DigestFinal(ctx: EVP_MD_CTX, res: *mut u8, n: *u32);
} }
fn evpmd(t: HashType) -> (EVP_MD, uint) { pub fn evpmd(t: HashType) -> (EVP_MD, uint) {
unsafe {
match t { match t {
MD5 => (libcrypto::EVP_md5(), 16u), MD5 => (libcrypto::EVP_md5(), 16u),
SHA1 => (libcrypto::EVP_sha1(), 20u), SHA1 => (libcrypto::EVP_sha1(), 20u),
@ -42,6 +43,7 @@ fn evpmd(t: HashType) -> (EVP_MD, uint) {
SHA512 => (libcrypto::EVP_sha512(), 64u), SHA512 => (libcrypto::EVP_sha512(), 64u),
} }
} }
}
pub struct Hasher { pub struct Hasher {
priv evp: EVP_MD, priv evp: EVP_MD,
@ -50,31 +52,38 @@ pub struct Hasher {
} }
pub fn Hasher(ht: HashType) -> Hasher { pub fn Hasher(ht: HashType) -> Hasher {
unsafe {
let ctx = libcrypto::EVP_MD_CTX_create(); let ctx = libcrypto::EVP_MD_CTX_create();
let (evp, mdlen) = evpmd(ht); let (evp, mdlen) = evpmd(ht);
let h = Hasher { evp: evp, ctx: ctx, len: mdlen }; let h = Hasher { evp: evp, ctx: ctx, len: mdlen };
h.init(); h.init();
h h
} }
}
pub impl Hasher { pub impl Hasher {
/// Initializes this hasher /// Initializes this hasher
fn init() unsafe { fn init(&self) {
unsafe {
libcrypto::EVP_DigestInit(self.ctx, self.evp); libcrypto::EVP_DigestInit(self.ctx, self.evp);
} }
}
/// Update this hasher with more input bytes /// Update this hasher with more input bytes
fn update(data: &[u8]) unsafe { fn update(&self, data: &[u8]) {
unsafe {
do vec::as_imm_buf(data) |pdata, len| { do vec::as_imm_buf(data) |pdata, len| {
libcrypto::EVP_DigestUpdate(self.ctx, pdata, len as c_uint) libcrypto::EVP_DigestUpdate(self.ctx, pdata, len as c_uint)
} }
} }
}
/** /**
* Return the digest of all bytes added to this hasher since its last * Return the digest of all bytes added to this hasher since its last
* initialization * initialization
*/ */
fn final() -> ~[u8] unsafe { fn final(&self) -> ~[u8] {
unsafe {
let mut res = vec::from_elem(self.len, 0u8); let mut res = vec::from_elem(self.len, 0u8);
do vec::as_mut_buf(res) |pres, _len| { do vec::as_mut_buf(res) |pres, _len| {
libcrypto::EVP_DigestFinal(self.ctx, pres, ptr::null()); libcrypto::EVP_DigestFinal(self.ctx, pres, ptr::null());
@ -82,19 +91,23 @@ pub impl Hasher {
res res
} }
} }
}
/** /**
* Hashes the supplied input data using hash t, returning the resulting hash * Hashes the supplied input data using hash t, returning the resulting hash
* value * value
*/ */
pub fn hash(t: HashType, data: &[u8]) -> ~[u8] unsafe { pub fn hash(t: HashType, data: &[u8]) -> ~[u8] {
unsafe {
let h = Hasher(t); let h = Hasher(t);
h.update(data); h.update(data);
h.final() h.final()
} }
}
#[cfg(test)] #[cfg(test)]
mod tests { mod tests {
use super::*;
use hex::FromHex; use hex::FromHex;
use hex::ToHex; use hex::ToHex;
@ -117,7 +130,7 @@ mod tests {
io::println(fmt!("Test failed - %s != %s", calced, hashtest.expected_output)); io::println(fmt!("Test failed - %s != %s", calced, hashtest.expected_output));
} }
assert calced == hashtest.expected_output; assert!(calced == hashtest.expected_output);
} }
// Test vectors from http://www.nsrl.nist.gov/testdata/ // Test vectors from http://www.nsrl.nist.gov/testdata/

25
hex.rs
View File

@ -17,13 +17,13 @@
extern mod std; extern mod std;
pub trait ToHex { pub trait ToHex {
pure fn to_hex() -> ~str; fn to_hex(&self) -> ~str;
} }
impl &[u8]: ToHex { impl<'self> ToHex for &'self [u8] {
pure fn to_hex() -> ~str { fn to_hex(&self) -> ~str {
let chars = str::chars(~"0123456789ABCDEF"); let chars = str::to_chars(~"0123456789ABCDEF");
let mut s = ~""; let mut s = ~"";
@ -45,20 +45,20 @@ impl &[u8]: ToHex {
} }
pub trait FromHex { pub trait FromHex {
pure fn from_hex() -> ~[u8]; fn from_hex(&self) -> ~[u8];
} }
impl &str: FromHex { impl<'self> FromHex for &'self str {
pure fn from_hex() -> ~[u8] { fn from_hex(&self) -> ~[u8] {
let mut vec = vec::with_capacity(self.len() / 2); let mut vec = vec::with_capacity(self.len() / 2);
for str::each_chari(self) |i,c| { for str::each_chari(*self) |i,c| {
let nibble = let nibble =
if c >= '0' && c <= '9' { (c as u8) - 0x30 } if c >= '0' && c <= '9' { (c as u8) - 0x30 }
else if c >= 'a' && c <= 'f' { (c as u8) - (0x61 - 10) } else if c >= 'a' && c <= 'f' { (c as u8) - (0x61 - 10) }
else if c >= 'A' && c <= 'F' { (c as u8) - (0x41 - 10) } else if c >= 'A' && c <= 'F' { (c as u8) - (0x41 - 10) }
else { fail ~"bad hex character"; }; else { fail!(~"bad hex character"); };
if i % 2 == 0 { if i % 2 == 0 {
unsafe { unsafe {
@ -76,15 +76,16 @@ impl &str: FromHex {
#[cfg(test)] #[cfg(test)]
mod tests { mod tests {
use super::*;
#[test] #[test]
pub fn test() { pub fn test() {
assert [05u8, 0xffu8, 0x00u8, 0x59u8].to_hex() == ~"05FF0059"; assert!([05u8, 0xffu8, 0x00u8, 0x59u8].to_hex() == ~"05FF0059");
assert "00FFA9D1F5".from_hex() == ~[0, 0xff, 0xa9, 0xd1, 0xf5]; assert!("00FFA9D1F5".from_hex() == ~[0, 0xff, 0xa9, 0xd1, 0xf5]);
assert "00FFA9D1F5".from_hex().to_hex() == ~"00FFA9D1F5"; assert!("00FFA9D1F5".from_hex().to_hex() == ~"00FFA9D1F5");
} }

28
hmac.rs
View File

@ -17,13 +17,13 @@
use hash::*; use hash::*;
#[allow(non_camel_case_types)] #[allow(non_camel_case_types)]
struct HMAC_CTX { pub struct HMAC_CTX {
mut md: EVP_MD, md: EVP_MD,
mut md_ctx: EVP_MD_CTX, md_ctx: EVP_MD_CTX,
mut i_ctx: EVP_MD_CTX, i_ctx: EVP_MD_CTX,
mut o_ctx: EVP_MD_CTX, o_ctx: EVP_MD_CTX,
mut key_length: libc::c_uint, key_length: libc::c_uint,
mut key: [libc::c_uchar * 128] key: [libc::c_uchar, ..128]
} }
#[link_name = "crypto"] #[link_name = "crypto"]
@ -38,7 +38,7 @@ extern mod libcrypto {
} }
pub struct HMAC { pub struct HMAC {
priv mut ctx: HMAC_CTX, priv ctx: HMAC_CTX,
priv len: uint, priv len: uint,
} }
@ -66,25 +66,29 @@ pub fn HMAC(ht: HashType, key: ~[u8]) -> HMAC {
} }
pub impl HMAC { pub impl HMAC {
fn update(data: &[u8]) unsafe { fn update(&mut self, data: &[u8]) {
unsafe {
do vec::as_imm_buf(data) |pdata, len| { do vec::as_imm_buf(data) |pdata, len| {
libcrypto::HMAC_Update(&mut self.ctx, pdata, len as libc::c_uint) libcrypto::HMAC_Update(&mut self.ctx, pdata, len as libc::c_uint)
} }
} }
}
fn final() -> ~[u8] unsafe { fn final(&mut self) -> ~[u8] {
unsafe {
let mut res = vec::from_elem(self.len, 0u8); let mut res = vec::from_elem(self.len, 0u8);
let mut outlen: libc::c_uint = 0; let mut outlen: libc::c_uint = 0;
do vec::as_mut_buf(res) |pres, _len| { do vec::as_mut_buf(res) |pres, _len| {
libcrypto::HMAC_Final(&mut self.ctx, pres, &mut outlen); libcrypto::HMAC_Final(&mut self.ctx, pres, &mut outlen);
assert self.len == outlen as uint assert!(self.len == outlen as uint)
} }
res res
} }
} }
}
fn main() { fn main() {
let h = HMAC(SHA512, ~[00u8]); let mut h = HMAC(SHA512, ~[00u8]);
h.update(~[00u8]); h.update(~[00u8]);

View File

@ -1,4 +1,4 @@
use libc::{c_char, c_uchar, c_int}; use core::libc::c_int;
#[link_name = "crypto"] #[link_name = "crypto"]
#[abi = "cdecl"] #[abi = "cdecl"]
@ -14,21 +14,23 @@ Derives a key from a password and salt using the PBKDF2-HMAC-SHA1 algorithm.
"] "]
pub fn pbkdf2_hmac_sha1(pass: &str, salt: &[u8], iter: uint, pub fn pbkdf2_hmac_sha1(pass: &str, salt: &[u8], iter: uint,
keylen: uint) -> ~[u8] { keylen: uint) -> ~[u8] {
assert iter >= 1u; assert!(iter >= 1u);
assert keylen >= 1u; assert!(keylen >= 1u);
do str::as_buf(pass) |pass_buf, pass_len| { do str::as_buf(pass) |pass_buf, pass_len| {
do vec::as_imm_buf(salt) |salt_buf, salt_len| { do vec::as_imm_buf(salt) |salt_buf, salt_len| {
let mut out = vec::with_capacity(keylen); let mut out = vec::with_capacity(keylen);
do vec::as_mut_buf(out) |out_buf, _out_len| { do vec::as_mut_buf(out) |out_buf, _out_len| {
unsafe {
let r = libcrypto::PKCS5_PBKDF2_HMAC_SHA1( let r = libcrypto::PKCS5_PBKDF2_HMAC_SHA1(
pass_buf, pass_len as c_int, pass_buf, pass_len as c_int,
salt_buf, salt_len as c_int, salt_buf, salt_len as c_int,
iter as c_int, keylen as c_int, iter as c_int, keylen as c_int,
out_buf); out_buf);
if r != 1 as c_int { fail; } if r != 1 as c_int { fail!(); }
}
} }
unsafe { vec::raw::set_len(&mut out, keylen); } unsafe { vec::raw::set_len(&mut out, keylen); }
@ -40,11 +42,13 @@ pub fn pbkdf2_hmac_sha1(pass: &str, salt: &[u8], iter: uint,
#[cfg(test)] #[cfg(test)]
mod tests { mod tests {
use super::*;
// Test vectors from // Test vectors from
// http://tools.ietf.org/html/draft-josefsson-pbkdf2-test-vectors-06 // http://tools.ietf.org/html/draft-josefsson-pbkdf2-test-vectors-06
#[test] #[test]
fn test_pbkdf2_hmac_sha1() { fn test_pbkdf2_hmac_sha1() {
assert pbkdf2_hmac_sha1( assert!(pbkdf2_hmac_sha1(
"password", "password",
str::to_bytes("salt"), str::to_bytes("salt"),
1u, 1u,
@ -53,9 +57,9 @@ mod tests {
0x0c_u8, 0x60_u8, 0xc8_u8, 0x0f_u8, 0x96_u8, 0x1f_u8, 0x0e_u8, 0x0c_u8, 0x60_u8, 0xc8_u8, 0x0f_u8, 0x96_u8, 0x1f_u8, 0x0e_u8,
0x71_u8, 0xf3_u8, 0xa9_u8, 0xb5_u8, 0x24_u8, 0xaf_u8, 0x60_u8, 0x71_u8, 0xf3_u8, 0xa9_u8, 0xb5_u8, 0x24_u8, 0xaf_u8, 0x60_u8,
0x12_u8, 0x06_u8, 0x2f_u8, 0xe0_u8, 0x37_u8, 0xa6_u8 0x12_u8, 0x06_u8, 0x2f_u8, 0xe0_u8, 0x37_u8, 0xa6_u8
]; ]);
assert pbkdf2_hmac_sha1( assert!(pbkdf2_hmac_sha1(
"password", "password",
str::to_bytes("salt"), str::to_bytes("salt"),
2u, 2u,
@ -64,9 +68,9 @@ mod tests {
0xea_u8, 0x6c_u8, 0x01_u8, 0x4d_u8, 0xc7_u8, 0x2d_u8, 0x6f_u8, 0xea_u8, 0x6c_u8, 0x01_u8, 0x4d_u8, 0xc7_u8, 0x2d_u8, 0x6f_u8,
0x8c_u8, 0xcd_u8, 0x1e_u8, 0xd9_u8, 0x2a_u8, 0xce_u8, 0x1d_u8, 0x8c_u8, 0xcd_u8, 0x1e_u8, 0xd9_u8, 0x2a_u8, 0xce_u8, 0x1d_u8,
0x41_u8, 0xf0_u8, 0xd8_u8, 0xde_u8, 0x89_u8, 0x57_u8 0x41_u8, 0xf0_u8, 0xd8_u8, 0xde_u8, 0x89_u8, 0x57_u8
]; ]);
assert pbkdf2_hmac_sha1( assert!(pbkdf2_hmac_sha1(
"password", "password",
str::to_bytes("salt"), str::to_bytes("salt"),
4096u, 4096u,
@ -75,9 +79,9 @@ mod tests {
0x4b_u8, 0x00_u8, 0x79_u8, 0x01_u8, 0xb7_u8, 0x65_u8, 0x48_u8, 0x4b_u8, 0x00_u8, 0x79_u8, 0x01_u8, 0xb7_u8, 0x65_u8, 0x48_u8,
0x9a_u8, 0xbe_u8, 0xad_u8, 0x49_u8, 0xd9_u8, 0x26_u8, 0xf7_u8, 0x9a_u8, 0xbe_u8, 0xad_u8, 0x49_u8, 0xd9_u8, 0x26_u8, 0xf7_u8,
0x21_u8, 0xd0_u8, 0x65_u8, 0xa4_u8, 0x29_u8, 0xc1_u8 0x21_u8, 0xd0_u8, 0x65_u8, 0xa4_u8, 0x29_u8, 0xc1_u8
]; ]);
assert pbkdf2_hmac_sha1( assert!(pbkdf2_hmac_sha1(
"password", "password",
str::to_bytes("salt"), str::to_bytes("salt"),
16777216u, 16777216u,
@ -86,9 +90,9 @@ mod tests {
0xee_u8, 0xfe_u8, 0x3d_u8, 0x61_u8, 0xcd_u8, 0x4d_u8, 0xa4_u8, 0xee_u8, 0xfe_u8, 0x3d_u8, 0x61_u8, 0xcd_u8, 0x4d_u8, 0xa4_u8,
0xe4_u8, 0xe9_u8, 0x94_u8, 0x5b_u8, 0x3d_u8, 0x6b_u8, 0xa2_u8, 0xe4_u8, 0xe9_u8, 0x94_u8, 0x5b_u8, 0x3d_u8, 0x6b_u8, 0xa2_u8,
0x15_u8, 0x8c_u8, 0x26_u8, 0x34_u8, 0xe9_u8, 0x84_u8 0x15_u8, 0x8c_u8, 0x26_u8, 0x34_u8, 0xe9_u8, 0x84_u8
]; ]);
assert pbkdf2_hmac_sha1( assert!(pbkdf2_hmac_sha1(
"passwordPASSWORDpassword", "passwordPASSWORDpassword",
str::to_bytes("saltSALTsaltSALTsaltSALTsaltSALTsalt"), str::to_bytes("saltSALTsaltSALTsaltSALTsaltSALTsalt"),
4096u, 4096u,
@ -98,9 +102,9 @@ mod tests {
0x9b_u8, 0x80_u8, 0xc8_u8, 0xd8_u8, 0x36_u8, 0x62_u8, 0xc0_u8, 0x9b_u8, 0x80_u8, 0xc8_u8, 0xd8_u8, 0x36_u8, 0x62_u8, 0xc0_u8,
0xe4_u8, 0x4a_u8, 0x8b_u8, 0x29_u8, 0x1a_u8, 0x96_u8, 0x4c_u8, 0xe4_u8, 0x4a_u8, 0x8b_u8, 0x29_u8, 0x1a_u8, 0x96_u8, 0x4c_u8,
0xf2_u8, 0xf0_u8, 0x70_u8, 0x38_u8 0xf2_u8, 0xf0_u8, 0x70_u8, 0x38_u8
]; ]);
assert pbkdf2_hmac_sha1( assert!(pbkdf2_hmac_sha1(
"pass\x00word", "pass\x00word",
str::to_bytes("sa\x00lt"), str::to_bytes("sa\x00lt"),
4096u, 4096u,
@ -109,6 +113,6 @@ mod tests {
0x56_u8, 0xfa_u8, 0x6a_u8, 0xa7_u8, 0x55_u8, 0x48_u8, 0x09_u8, 0x56_u8, 0xfa_u8, 0x6a_u8, 0xa7_u8, 0x55_u8, 0x48_u8, 0x09_u8,
0x9d_u8, 0xcc_u8, 0x37_u8, 0xd7_u8, 0xf0_u8, 0x34_u8, 0x25_u8, 0x9d_u8, 0xcc_u8, 0x37_u8, 0xd7_u8, 0xf0_u8, 0x34_u8, 0x25_u8,
0xe0_u8, 0xc3_u8 0xe0_u8, 0xc3_u8
]; ]);
} }
} }

174
pkey.rs
View File

@ -1,4 +1,4 @@
use libc::{c_int, c_uint}; use core::libc::{c_int, c_uint};
use hash::{HashType, MD5, SHA1, SHA224, SHA256, SHA384, SHA512}; use hash::{HashType, MD5, SHA1, SHA224, SHA256, SHA384, SHA512};
#[allow(non_camel_case_types)] #[allow(non_camel_case_types)]
@ -74,25 +74,33 @@ fn openssl_hash_nid(hash: HashType) -> c_int {
} }
} }
fn rsa_to_any(rsa: *RSA) -> *ANYKEY unsafe { fn rsa_to_any(rsa: *RSA) -> *ANYKEY {
unsafe {
cast::reinterpret_cast(&rsa) cast::reinterpret_cast(&rsa)
} }
}
fn any_to_rsa(anykey: *ANYKEY) -> *RSA unsafe { fn any_to_rsa(anykey: *ANYKEY) -> *RSA {
unsafe {
cast::reinterpret_cast(&anykey) cast::reinterpret_cast(&anykey)
} }
}
pub struct PKey { pub struct PKey {
priv mut evp: *EVP_PKEY, priv evp: *EVP_PKEY,
priv mut parts: Parts, priv parts: Parts,
} }
pub fn PKey() -> PKey { pub fn PKey() -> PKey {
unsafe {
PKey { evp: libcrypto::EVP_PKEY_new(), parts: Neither } PKey { evp: libcrypto::EVP_PKEY_new(), parts: Neither }
} }
}
///Represents a public key, optionally with a private key attached.
priv impl PKey { priv impl PKey {
fn _tostr(f: fn@(*EVP_PKEY, &*mut u8) -> c_int) -> ~[u8] unsafe { priv fn _tostr(&self, f: @fn(*EVP_PKEY, &*mut u8) -> c_int) -> ~[u8] {
unsafe {
let buf = ptr::mut_null(); let buf = ptr::mut_null();
let len = f(self.evp, &buf); let len = f(self.evp, &buf);
if len < 0 as c_int { return ~[]; } if len < 0 as c_int { return ~[]; }
@ -102,13 +110,16 @@ priv impl PKey {
f(self.evp, &ps) f(self.evp, &ps)
}; };
vec::slice(s, 0u, r as uint) vec::slice(s, 0u, r as uint).to_owned()
}
} }
fn _fromstr( priv fn _fromstr(
&mut self,
s: &[u8], s: &[u8],
f: fn@(c_int, &*EVP_PKEY, &*u8, c_uint) -> *EVP_PKEY f: @fn(c_int, &*EVP_PKEY, &*u8, c_uint) -> *EVP_PKEY
) unsafe { ) {
unsafe {
do vec::as_imm_buf(s) |ps, len| { do vec::as_imm_buf(s) |ps, len| {
let evp = ptr::null(); let evp = ptr::null();
f(6 as c_int, &evp, &ps, len as c_uint); f(6 as c_int, &evp, &ps, len as c_uint);
@ -116,10 +127,11 @@ priv impl PKey {
} }
} }
} }
}
///Represents a public key, optionally with a private key attached.
pub impl PKey { pub impl PKey {
fn gen(keysz: uint) unsafe { fn gen(&mut self, keysz: uint) {
unsafe {
let rsa = libcrypto::RSA_generate_key( let rsa = libcrypto::RSA_generate_key(
keysz as c_uint, keysz as c_uint,
65537u as c_uint, 65537u as c_uint,
@ -132,49 +144,60 @@ pub impl PKey {
libcrypto::EVP_PKEY_assign(self.evp, 6 as c_int, rsa_); libcrypto::EVP_PKEY_assign(self.evp, 6 as c_int, rsa_);
self.parts = Both; self.parts = Both;
} }
}
/** /**
* Returns a serialized form of the public key, suitable for load_pub(). * Returns a serialized form of the public key, suitable for load_pub().
*/ */
fn save_pub() -> ~[u8] { fn save_pub(&self) -> ~[u8] {
unsafe {
self._tostr(libcrypto::i2d_PublicKey) self._tostr(libcrypto::i2d_PublicKey)
} }
}
/** /**
* Loads a serialized form of the public key, as produced by save_pub(). * Loads a serialized form of the public key, as produced by save_pub().
*/ */
fn load_pub(s: &[u8]) { fn load_pub(&mut self, s: &[u8]) {
unsafe {
self._fromstr(s, libcrypto::d2i_PublicKey); self._fromstr(s, libcrypto::d2i_PublicKey);
self.parts = Public; self.parts = Public;
} }
}
/** /**
* Returns a serialized form of the public and private keys, suitable for * Returns a serialized form of the public and private keys, suitable for
* load_priv(). * load_priv().
*/ */
fn save_priv() -> ~[u8] { fn save_priv(&self, ) -> ~[u8] {
unsafe {
self._tostr(libcrypto::i2d_PrivateKey) self._tostr(libcrypto::i2d_PrivateKey)
} }
}
/** /**
* Loads a serialized form of the public and private keys, as produced by * Loads a serialized form of the public and private keys, as produced by
* save_priv(). * save_priv().
*/ */
fn load_priv(s: &[u8]) { fn load_priv(&mut self, s: &[u8]) {
unsafe {
self._fromstr(s, libcrypto::d2i_PrivateKey); self._fromstr(s, libcrypto::d2i_PrivateKey);
self.parts = Both; self.parts = Both;
} }
}
/** /**
* Returns the size of the public key modulus. * Returns the size of the public key modulus.
*/ */
fn size() -> uint { fn size(&self) -> uint {
unsafe {
libcrypto::RSA_size(libcrypto::EVP_PKEY_get1_RSA(self.evp)) as uint libcrypto::RSA_size(libcrypto::EVP_PKEY_get1_RSA(self.evp)) as uint
} }
}
/** /**
* Returns whether this pkey object can perform the specified role. * Returns whether this pkey object can perform the specified role.
*/ */
fn can(r: Role) -> bool { fn can(&self, r: Role) -> bool {
match r { match r {
Encrypt => Encrypt =>
match self.parts { match self.parts {
@ -203,19 +226,22 @@ pub impl PKey {
* Returns the maximum amount of data that can be encrypted by an encrypt() * Returns the maximum amount of data that can be encrypted by an encrypt()
* call. * call.
*/ */
fn max_data() -> uint unsafe { fn max_data(&self) -> uint {
unsafe {
let rsa = libcrypto::EVP_PKEY_get1_RSA(self.evp); let rsa = libcrypto::EVP_PKEY_get1_RSA(self.evp);
let len = libcrypto::RSA_size(rsa); let len = libcrypto::RSA_size(rsa);
// 41 comes from RSA_public_encrypt(3) for OAEP // 41 comes from RSA_public_encrypt(3) for OAEP
len as uint - 41u len as uint - 41u
} }
}
fn encrypt_with_padding(s: &[u8], padding: EncryptionPadding) -> ~[u8] unsafe { fn encrypt_with_padding(&self, s: &[u8], padding: EncryptionPadding) -> ~[u8] {
unsafe {
let rsa = libcrypto::EVP_PKEY_get1_RSA(self.evp); let rsa = libcrypto::EVP_PKEY_get1_RSA(self.evp);
let len = libcrypto::RSA_size(rsa); let len = libcrypto::RSA_size(rsa);
assert s.len() < self.max_data(); assert!(s.len() < self.max_data());
let mut r = vec::from_elem(len as uint + 1u, 0u8); let mut r = vec::from_elem(len as uint + 1u, 0u8);
@ -232,17 +258,19 @@ pub impl PKey {
if rv < 0 as c_int { if rv < 0 as c_int {
~[] ~[]
} else { } else {
vec::slice(r, 0u, rv as uint) vec::const_slice(r, 0u, rv as uint).to_owned()
}
} }
} }
} }
} }
fn decrypt_with_padding(s: &[u8], padding: EncryptionPadding) -> ~[u8] unsafe { fn decrypt_with_padding(&self, s: &[u8], padding: EncryptionPadding) -> ~[u8] {
unsafe {
let rsa = libcrypto::EVP_PKEY_get1_RSA(self.evp); let rsa = libcrypto::EVP_PKEY_get1_RSA(self.evp);
let len = libcrypto::RSA_size(rsa); let len = libcrypto::RSA_size(rsa);
assert s.len() as c_uint == libcrypto::RSA_size(rsa); assert!(s.len() as c_uint == libcrypto::RSA_size(rsa));
let mut r = vec::from_elem(len as uint + 1u, 0u8); let mut r = vec::from_elem(len as uint + 1u, 0u8);
@ -259,7 +287,8 @@ pub impl PKey {
if rv < 0 as c_int { if rv < 0 as c_int {
~[] ~[]
} else { } else {
vec::slice(r, 0u, rv as uint) vec::const_slice(r, 0u, rv as uint).to_owned()
}
} }
} }
} }
@ -269,26 +298,27 @@ pub impl PKey {
* Encrypts data using OAEP padding, returning the encrypted data. The * Encrypts data using OAEP padding, returning the encrypted data. The
* supplied data must not be larger than max_data(). * supplied data must not be larger than max_data().
*/ */
fn encrypt(s: &[u8]) -> ~[u8] unsafe { self.encrypt_with_padding(s, OAEP) } fn encrypt(&self, s: &[u8]) -> ~[u8] { unsafe { self.encrypt_with_padding(s, OAEP) } }
/** /**
* Decrypts data, expecting OAEP padding, returning the decrypted data. * Decrypts data, expecting OAEP padding, returning the decrypted data.
*/ */
fn decrypt(s: &[u8]) -> ~[u8] unsafe { self.decrypt_with_padding(s, OAEP) } fn decrypt(&self, s: &[u8]) -> ~[u8] { unsafe { self.decrypt_with_padding(s, OAEP) } }
/** /**
* Signs data, using OpenSSL's default scheme and sha256. Unlike encrypt(), * Signs data, using OpenSSL's default scheme and sha256. Unlike encrypt(),
* can process an arbitrary amount of data; returns the signature. * can process an arbitrary amount of data; returns the signature.
*/ */
fn sign(s: &[u8]) -> ~[u8] unsafe { self.sign_with_hash(s, SHA256) } fn sign(&self, s: &[u8]) -> ~[u8] { unsafe { self.sign_with_hash(s, SHA256) } }
/** /**
* Verifies a signature s (using OpenSSL's default scheme and sha256) on a * Verifies a signature s (using OpenSSL's default scheme and sha256) on a
* message m. Returns true if the signature is valid, and false otherwise. * message m. Returns true if the signature is valid, and false otherwise.
*/ */
fn verify(m: &[u8], s: &[u8]) -> bool unsafe { self.verify_with_hash(m, s, SHA256) } fn verify(&self, m: &[u8], s: &[u8]) -> bool { unsafe { self.verify_with_hash(m, s, SHA256) } }
fn sign_with_hash(s: &[u8], hash: HashType) -> ~[u8] unsafe { fn sign_with_hash(&self, s: &[u8], hash: HashType) -> ~[u8] {
unsafe {
let rsa = libcrypto::EVP_PKEY_get1_RSA(self.evp); let rsa = libcrypto::EVP_PKEY_get1_RSA(self.evp);
let len = libcrypto::RSA_size(rsa); let len = libcrypto::RSA_size(rsa);
let mut r = vec::from_elem(len as uint + 1u, 0u8); let mut r = vec::from_elem(len as uint + 1u, 0u8);
@ -308,13 +338,15 @@ pub impl PKey {
if rv < 0 as c_int { if rv < 0 as c_int {
~[] ~[]
} else { } else {
vec::slice(r, 0u, *plen as uint) vec::const_slice(r, 0u, *plen as uint).to_owned()
}
} }
} }
} }
} }
fn verify_with_hash(m: &[u8], s: &[u8], hash: HashType) -> bool unsafe { fn verify_with_hash(&self, m: &[u8], s: &[u8], hash: HashType) -> bool {
unsafe {
let rsa = libcrypto::EVP_PKEY_get1_RSA(self.evp); let rsa = libcrypto::EVP_PKEY_get1_RSA(self.evp);
do vec::as_imm_buf(m) |pm, m_len| { do vec::as_imm_buf(m) |pm, m_len| {
@ -333,93 +365,97 @@ pub impl PKey {
} }
} }
} }
}
#[cfg(test)] #[cfg(test)]
mod tests { mod tests {
use super::*;
use hash::{MD5, SHA1};
#[test] #[test]
fn test_gen_pub() { fn test_gen_pub() {
let k0 = PKey(); let mut k0 = PKey();
let k1 = PKey(); let mut k1 = PKey();
k0.gen(512u); k0.gen(512u);
k1.load_pub(k0.save_pub()); k1.load_pub(k0.save_pub());
assert(k0.save_pub() == k1.save_pub()); assert!(k0.save_pub() == k1.save_pub());
assert(k0.size() == k1.size()); assert!(k0.size() == k1.size());
assert(k0.can(Encrypt)); assert!(k0.can(Encrypt));
assert(k0.can(Decrypt)); assert!(k0.can(Decrypt));
assert(k0.can(Verify)); assert!(k0.can(Verify));
assert(k0.can(Sign)); assert!(k0.can(Sign));
assert(k1.can(Encrypt)); assert!(k1.can(Encrypt));
assert(!k1.can(Decrypt)); assert!(!k1.can(Decrypt));
assert(k1.can(Verify)); assert!(k1.can(Verify));
assert(!k1.can(Sign)); assert!(!k1.can(Sign));
} }
#[test] #[test]
fn test_gen_priv() { fn test_gen_priv() {
let k0 = PKey(); let mut k0 = PKey();
let k1 = PKey(); let mut k1 = PKey();
k0.gen(512u); k0.gen(512u);
k1.load_priv(k0.save_priv()); k1.load_priv(k0.save_priv());
assert(k0.save_priv() == k1.save_priv()); assert!(k0.save_priv() == k1.save_priv());
assert(k0.size() == k1.size()); assert!(k0.size() == k1.size());
assert(k0.can(Encrypt)); assert!(k0.can(Encrypt));
assert(k0.can(Decrypt)); assert!(k0.can(Decrypt));
assert(k0.can(Verify)); assert!(k0.can(Verify));
assert(k0.can(Sign)); assert!(k0.can(Sign));
assert(k1.can(Encrypt)); assert!(k1.can(Encrypt));
assert(k1.can(Decrypt)); assert!(k1.can(Decrypt));
assert(k1.can(Verify)); assert!(k1.can(Verify));
assert(k1.can(Sign)); assert!(k1.can(Sign));
} }
#[test] #[test]
fn test_encrypt() { fn test_encrypt() {
let k0 = PKey(); let mut k0 = PKey();
let k1 = PKey(); let mut k1 = PKey();
let msg = ~[0xdeu8, 0xadu8, 0xd0u8, 0x0du8]; let msg = ~[0xdeu8, 0xadu8, 0xd0u8, 0x0du8];
k0.gen(512u); k0.gen(512u);
k1.load_pub(k0.save_pub()); k1.load_pub(k0.save_pub());
let emsg = k1.encrypt(msg); let emsg = k1.encrypt(msg);
let dmsg = k0.decrypt(emsg); let dmsg = k0.decrypt(emsg);
assert(msg == dmsg); assert!(msg == dmsg);
} }
#[test] #[test]
fn test_encrypt_pkcs() { fn test_encrypt_pkcs() {
let k0 = PKey(); let mut k0 = PKey();
let k1 = PKey(); let mut k1 = PKey();
let msg = ~[0xdeu8, 0xadu8, 0xd0u8, 0x0du8]; let msg = ~[0xdeu8, 0xadu8, 0xd0u8, 0x0du8];
k0.gen(512u); k0.gen(512u);
k1.load_pub(k0.save_pub()); k1.load_pub(k0.save_pub());
let emsg = k1.encrypt_with_padding(msg, PKCS1v15); let emsg = k1.encrypt_with_padding(msg, PKCS1v15);
let dmsg = k0.decrypt_with_padding(emsg, PKCS1v15); let dmsg = k0.decrypt_with_padding(emsg, PKCS1v15);
assert(msg == dmsg); assert!(msg == dmsg);
} }
#[test] #[test]
fn test_sign() { fn test_sign() {
let k0 = PKey(); let mut k0 = PKey();
let k1 = PKey(); let mut k1 = PKey();
let msg = ~[0xdeu8, 0xadu8, 0xd0u8, 0x0du8]; let msg = ~[0xdeu8, 0xadu8, 0xd0u8, 0x0du8];
k0.gen(512u); k0.gen(512u);
k1.load_pub(k0.save_pub()); k1.load_pub(k0.save_pub());
let sig = k0.sign(msg); let sig = k0.sign(msg);
let rv = k1.verify(msg, sig); let rv = k1.verify(msg, sig);
assert(rv == true); assert!(rv == true);
} }
#[test] #[test]
fn test_sign_hashes() { fn test_sign_hashes() {
let k0 = PKey(); let mut k0 = PKey();
let k1 = PKey(); let mut k1 = PKey();
let msg = ~[0xdeu8, 0xadu8, 0xd0u8, 0x0du8]; let msg = ~[0xdeu8, 0xadu8, 0xd0u8, 0x0du8];
k0.gen(512u); k0.gen(512u);
k1.load_pub(k0.save_pub()); k1.load_pub(k0.save_pub());
let sig = k0.sign_with_hash(msg, MD5); let sig = k0.sign_with_hash(msg, MD5);
assert k1.verify_with_hash(msg, sig, MD5); assert!(k1.verify_with_hash(msg, sig, MD5));
assert !k1.verify_with_hash(msg, sig, SHA1); assert!(!k1.verify_with_hash(msg, sig, SHA1));
} }
} }

View File

@ -1,4 +1,4 @@
use libc::{c_uchar, c_int}; use core::libc::c_int;
#[link_name = "crypto"] #[link_name = "crypto"]
#[abi = "cdecl"] #[abi = "cdecl"]
@ -10,8 +10,10 @@ pub fn rand_bytes(len: uint) -> ~[u8] {
let mut out = vec::with_capacity(len); let mut out = vec::with_capacity(len);
do vec::as_mut_buf(out) |out_buf, len| { do vec::as_mut_buf(out) |out_buf, len| {
unsafe {
let r = libcrypto::RAND_bytes(out_buf, len as c_int); let r = libcrypto::RAND_bytes(out_buf, len as c_int);
if r != 1 as c_int { fail } if r != 1 as c_int { fail!() }
}
} }
unsafe { vec::raw::set_len(&mut out, len); } unsafe { vec::raw::set_len(&mut out, len); }
@ -21,6 +23,8 @@ pub fn rand_bytes(len: uint) -> ~[u8] {
#[cfg(test)] #[cfg(test)]
mod tests { mod tests {
use super::*;
#[test] #[test]
fn test_rand_bytes() { fn test_rand_bytes() {
let bytes = rand_bytes(32u); let bytes = rand_bytes(32u);

70
symm.rs
View File

@ -1,8 +1,4 @@
use libc::{c_int, c_uint}; use core::libc::{c_int, c_uint};
export encryptmode, decryptmode;
export encrypt, decrypt;
export libcrypto;
#[allow(non_camel_case_types)] #[allow(non_camel_case_types)]
type EVP_CIPHER_CTX = *libc::c_void; type EVP_CIPHER_CTX = *libc::c_void;
@ -18,13 +14,13 @@ extern mod libcrypto {
fn EVP_aes_128_ecb() -> EVP_CIPHER; fn EVP_aes_128_ecb() -> EVP_CIPHER;
fn EVP_aes_128_cbc() -> EVP_CIPHER; fn EVP_aes_128_cbc() -> EVP_CIPHER;
fn EVP_aes_128_ctr() -> EVP_CIPHER; // fn EVP_aes_128_ctr() -> EVP_CIPHER;
fn EVP_aes_128_gcm() -> EVP_CIPHER; // fn EVP_aes_128_gcm() -> EVP_CIPHER;
fn EVP_aes_256_ecb() -> EVP_CIPHER; fn EVP_aes_256_ecb() -> EVP_CIPHER;
fn EVP_aes_256_cbc() -> EVP_CIPHER; fn EVP_aes_256_cbc() -> EVP_CIPHER;
fn EVP_aes_256_ctr() -> EVP_CIPHER; // fn EVP_aes_256_ctr() -> EVP_CIPHER;
fn EVP_aes_256_gcm() -> EVP_CIPHER; // fn EVP_aes_256_gcm() -> EVP_CIPHER;
fn EVP_rc4() -> EVP_CIPHER; fn EVP_rc4() -> EVP_CIPHER;
@ -44,32 +40,34 @@ pub enum Mode {
pub enum Type { pub enum Type {
AES_128_ECB, AES_128_ECB,
AES_128_CBC, AES_128_CBC,
AES_128_CTR, // AES_128_CTR,
//AES_128_GCM, //AES_128_GCM,
AES_256_ECB, AES_256_ECB,
AES_256_CBC, AES_256_CBC,
AES_256_CTR, // AES_256_CTR,
//AES_256_GCM, //AES_256_GCM,
RC4_128, RC4_128,
} }
fn evpc(t: Type) -> (EVP_CIPHER, uint, uint) { fn evpc(t: Type) -> (EVP_CIPHER, uint, uint) {
unsafe {
match t { match t {
AES_128_ECB => (libcrypto::EVP_aes_128_ecb(), 16u, 16u), AES_128_ECB => (libcrypto::EVP_aes_128_ecb(), 16u, 16u),
AES_128_CBC => (libcrypto::EVP_aes_128_cbc(), 16u, 16u), AES_128_CBC => (libcrypto::EVP_aes_128_cbc(), 16u, 16u),
AES_128_CTR => (libcrypto::EVP_aes_128_ctr(), 16u, 0u), // AES_128_CTR => (libcrypto::EVP_aes_128_ctr(), 16u, 0u),
//AES_128_GCM => (libcrypto::EVP_aes_128_gcm(), 16u, 16u), //AES_128_GCM => (libcrypto::EVP_aes_128_gcm(), 16u, 16u),
AES_256_ECB => (libcrypto::EVP_aes_256_ecb(), 32u, 16u), AES_256_ECB => (libcrypto::EVP_aes_256_ecb(), 32u, 16u),
AES_256_CBC => (libcrypto::EVP_aes_256_cbc(), 32u, 16u), AES_256_CBC => (libcrypto::EVP_aes_256_cbc(), 32u, 16u),
AES_256_CTR => (libcrypto::EVP_aes_256_ctr(), 32u, 0u), // AES_256_CTR => (libcrypto::EVP_aes_256_ctr(), 32u, 0u),
//AES_256_GCM => (libcrypto::EVP_aes_256_gcm(), 32u, 16u), //AES_256_GCM => (libcrypto::EVP_aes_256_gcm(), 32u, 16u),
RC4_128 => (libcrypto::EVP_rc4(), 16u, 0u), RC4_128 => (libcrypto::EVP_rc4(), 16u, 0u),
} }
} }
}
/// Represents a symmetric cipher context. /// Represents a symmetric cipher context.
pub struct Crypter { pub struct Crypter {
@ -80,32 +78,37 @@ pub struct Crypter {
} }
pub fn Crypter(t: Type) -> Crypter { pub fn Crypter(t: Type) -> Crypter {
unsafe {
let ctx = libcrypto::EVP_CIPHER_CTX_new(); let ctx = libcrypto::EVP_CIPHER_CTX_new();
let (evp, keylen, blocksz) = evpc(t); let (evp, keylen, blocksz) = evpc(t);
Crypter { evp: evp, ctx: ctx, keylen: keylen, blocksize: blocksz } Crypter { evp: evp, ctx: ctx, keylen: keylen, blocksize: blocksz }
} }
}
pub impl Crypter { pub impl Crypter {
/** /**
* Enables or disables padding. If padding is disabled, total amount of * Enables or disables padding. If padding is disabled, total amount of
* data encrypted must be a multiple of block size. * data encrypted must be a multiple of block size.
*/ */
fn pad(padding: bool) { fn pad(&self, padding: bool) {
if self.blocksize > 0 { if self.blocksize > 0 {
unsafe {
let v = if padding { 1 } else { 0 } as c_int; let v = if padding { 1 } else { 0 } as c_int;
libcrypto::EVP_CIPHER_CTX_set_padding(self.ctx, v); libcrypto::EVP_CIPHER_CTX_set_padding(self.ctx, v);
} }
} }
}
/** /**
* Initializes this crypter. * Initializes this crypter.
*/ */
fn init(mode: Mode, key: &[u8], iv: &[u8]) unsafe { fn init(&self, mode: Mode, key: &[u8], iv: &[u8]) {
unsafe {
let mode = match mode { let mode = match mode {
Encrypt => 1 as c_int, Encrypt => 1 as c_int,
Decrypt => 0 as c_int, Decrypt => 0 as c_int,
}; };
assert key.len() == self.keylen; assert!(key.len() == self.keylen);
do vec::as_imm_buf(key) |pkey, _len| { do vec::as_imm_buf(key) |pkey, _len| {
do vec::as_imm_buf(iv) |piv, _len| { do vec::as_imm_buf(iv) |piv, _len| {
@ -119,12 +122,14 @@ pub impl Crypter {
} }
} }
} }
}
/** /**
* Update this crypter with more data to encrypt or decrypt. Returns * Update this crypter with more data to encrypt or decrypt. Returns
* encrypted or decrypted bytes. * encrypted or decrypted bytes.
*/ */
fn update(data: &[u8]) -> ~[u8] unsafe { fn update(&self, data: &[u8]) -> ~[u8] {
unsafe {
do vec::as_imm_buf(data) |pdata, len| { do vec::as_imm_buf(data) |pdata, len| {
let mut res = vec::from_elem(len + self.blocksize, 0u8); let mut res = vec::from_elem(len + self.blocksize, 0u8);
@ -142,15 +147,17 @@ pub impl Crypter {
reslen reslen
}; };
vec::slice(res, 0u, reslen as uint) vec::slice(res, 0u, reslen as uint).to_owned()
}
} }
} }
/** /**
* Finish crypting. Returns the remaining partial block of output, if any. * Finish crypting. Returns the remaining partial block of output, if any.
*/ */
fn final() -> ~[u8] unsafe { fn final(&self) -> ~[u8] {
let res = vec::to_mut(vec::from_elem(self.blocksize, 0u8)); unsafe {
let mut res = vec::from_elem(self.blocksize, 0u8);
io::println(fmt!("final, res %? long", res.len())); io::println(fmt!("final, res %? long", res.len()));
@ -162,7 +169,8 @@ pub impl Crypter {
io::println(fmt!("openssl says %? bytes", reslen)); io::println(fmt!("openssl says %? bytes", reslen));
vec::slice(res, 0u, reslen as uint) vec::slice(res, 0u, reslen as uint).to_owned()
}
} }
} }
@ -170,7 +178,7 @@ pub impl Crypter {
* Encrypts data, using the specified crypter type in encrypt mode with the * Encrypts data, using the specified crypter type in encrypt mode with the
* specified key and iv; returns the resulting (encrypted) data. * specified key and iv; returns the resulting (encrypted) data.
*/ */
fn encrypt(t: Type, key: &[u8], iv: ~[u8], data: &[u8]) -> ~[u8] { pub fn encrypt(t: Type, key: &[u8], iv: ~[u8], data: &[u8]) -> ~[u8] {
let c = Crypter(t); let c = Crypter(t);
c.init(Encrypt, key, iv); c.init(Encrypt, key, iv);
let r = c.update(data); let r = c.update(data);
@ -182,7 +190,7 @@ fn encrypt(t: Type, key: &[u8], iv: ~[u8], data: &[u8]) -> ~[u8] {
* Decrypts data, using the specified crypter type in decrypt mode with the * Decrypts data, using the specified crypter type in decrypt mode with the
* specified key and iv; returns the resulting (decrypted) data. * specified key and iv; returns the resulting (decrypted) data.
*/ */
fn decrypt(t: Type, key: &[u8], iv: ~[u8], data: &[u8]) -> ~[u8] { pub fn decrypt(t: Type, key: &[u8], iv: ~[u8], data: &[u8]) -> ~[u8] {
let c = Crypter(t); let c = Crypter(t);
c.init(Decrypt, key, iv); c.init(Decrypt, key, iv);
let r = c.update(data); let r = c.update(data);
@ -192,6 +200,8 @@ fn decrypt(t: Type, key: &[u8], iv: ~[u8], data: &[u8]) -> ~[u8] {
#[cfg(test)] #[cfg(test)]
mod tests { mod tests {
use super::*;
use hex::FromHex; use hex::FromHex;
// Test vectors from FIPS-197: // Test vectors from FIPS-197:
@ -213,11 +223,11 @@ mod tests {
c.init(Encrypt, k0, ~[]); c.init(Encrypt, k0, ~[]);
c.pad(false); c.pad(false);
let r0 = c.update(p0) + c.final(); let r0 = c.update(p0) + c.final();
assert(r0 == c0); assert!(r0 == c0);
c.init(Decrypt, k0, ~[]); c.init(Decrypt, k0, ~[]);
c.pad(false); c.pad(false);
let p1 = c.update(r0) + c.final(); let p1 = c.update(r0) + c.final();
assert(p1 == p0); assert!(p1 == p0);
} }
fn cipher_test(ciphertype: Type, pt: ~str, ct: ~str, key: ~str, iv: ~str) { fn cipher_test(ciphertype: Type, pt: ~str, ct: ~str, key: ~str, iv: ~str) {
@ -236,7 +246,7 @@ mod tests {
io::println(fmt!("Lengths differ: %u in computed vs %u expected", io::println(fmt!("Lengths differ: %u in computed vs %u expected",
computed.len(), expected.len())); computed.len(), expected.len()));
} }
fail ~"test failure"; fail!(~"test failure");
} }
} }
@ -251,7 +261,7 @@ mod tests {
cipher_test(RC4_128, pt, ct, key, iv); cipher_test(RC4_128, pt, ct, key, iv);
} }
#[test] /*#[test]
fn test_aes128_ctr() { fn test_aes128_ctr() {
let pt = ~"6BC1BEE22E409F96E93D7E117393172AAE2D8A571E03AC9C9EB76FAC45AF8E5130C81C46A35CE411E5FBC1191A0A52EFF69F2445DF4F9B17AD2B417BE66C3710"; let pt = ~"6BC1BEE22E409F96E93D7E117393172AAE2D8A571E03AC9C9EB76FAC45AF8E5130C81C46A35CE411E5FBC1191A0A52EFF69F2445DF4F9B17AD2B417BE66C3710";
@ -260,9 +270,9 @@ mod tests {
let iv = ~"F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF"; let iv = ~"F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF";
cipher_test(AES_128_CTR, pt, ct, key, iv); cipher_test(AES_128_CTR, pt, ct, key, iv);
} }*/
#[test] /*#[test]
fn test_aes128_gcm() { fn test_aes128_gcm() {
// Test case 3 in GCM spec // Test case 3 in GCM spec
let pt = ~"d9313225f88406e5a55909c5aff5269a86a7a9531534f7da2e4c303d8a318a721c3c0c95956809532fcf0e2449a6b525b16aedf5aa0de657ba637b391aafd255"; let pt = ~"d9313225f88406e5a55909c5aff5269a86a7a9531534f7da2e4c303d8a318a721c3c0c95956809532fcf0e2449a6b525b16aedf5aa0de657ba637b391aafd255";
@ -271,6 +281,6 @@ mod tests {
let iv = ~"cafebabefacedbaddecaf888"; let iv = ~"cafebabefacedbaddecaf888";
cipher_test(AES_128_GCM, pt, ct, key, iv); cipher_test(AES_128_GCM, pt, ct, key, iv);
} }*/
} }