Merge pull request #141 from gkoz/borrow_mut

Improve Hasher and HMAC APIs
This commit is contained in:
Steven Fackler 2015-01-28 13:02:55 -08:00
commit 8b47daae66
7 changed files with 539 additions and 212 deletions

View File

@ -370,6 +370,7 @@ extern "C" {
pub fn EVP_DigestFinal_ex(ctx: *mut EVP_MD_CTX, res: *mut u8, n: *mut u32) -> c_int; pub fn EVP_DigestFinal_ex(ctx: *mut EVP_MD_CTX, res: *mut u8, n: *mut u32) -> c_int;
pub fn EVP_MD_CTX_create() -> *mut EVP_MD_CTX; pub fn EVP_MD_CTX_create() -> *mut EVP_MD_CTX;
pub fn EVP_MD_CTX_copy_ex(dst: *mut EVP_MD_CTX, src: *const EVP_MD_CTX) -> c_int;
pub fn EVP_MD_CTX_destroy(ctx: *mut EVP_MD_CTX); pub fn EVP_MD_CTX_destroy(ctx: *mut EVP_MD_CTX);
pub fn EVP_PKEY_new() -> *mut EVP_PKEY; pub fn EVP_PKEY_new() -> *mut EVP_PKEY;
@ -383,6 +384,7 @@ extern "C" {
pub fn HMAC_Final(ctx: *mut HMAC_CTX, output: *mut u8, len: *mut c_uint) -> c_int; pub fn HMAC_Final(ctx: *mut HMAC_CTX, output: *mut u8, len: *mut c_uint) -> c_int;
pub fn HMAC_Update(ctx: *mut HMAC_CTX, input: *const u8, len: c_uint) -> c_int; pub fn HMAC_Update(ctx: *mut HMAC_CTX, input: *const u8, len: c_uint) -> c_int;
pub fn HMAC_CTX_cleanup(ctx: *mut HMAC_CTX); pub fn HMAC_CTX_cleanup(ctx: *mut HMAC_CTX);
pub fn HMAC_CTX_copy(dst: *mut HMAC_CTX, src: *const HMAC_CTX) -> c_int;
pub fn PEM_read_bio_X509(bio: *mut BIO, out: *mut *mut X509, callback: Option<PasswordCallback>, pub fn PEM_read_bio_X509(bio: *mut BIO, out: *mut *mut X509, callback: Option<PasswordCallback>,

View File

@ -1,12 +1,12 @@
use libc::c_uint; use libc::c_uint;
use std::ptr;
use std::old_io;
use std::iter::repeat; use std::iter::repeat;
use std::old_io::{IoError, Writer};
use ffi; use ffi;
/// Message digest (hash) type.
#[derive(Copy)] #[derive(Copy)]
pub enum HashType { pub enum Type {
MD5, MD5,
SHA1, SHA1,
SHA224, SHA224,
@ -16,219 +16,318 @@ pub enum HashType {
RIPEMD160 RIPEMD160
} }
pub fn evpmd(t: HashType) -> (*const ffi::EVP_MD, u32) { impl Type {
unsafe { /// Returns the length of the message digest.
match t { #[inline]
HashType::MD5 => (ffi::EVP_md5(), 16), pub fn md_len(&self) -> usize {
HashType::SHA1 => (ffi::EVP_sha1(), 20), use self::Type::*;
HashType::SHA224 => (ffi::EVP_sha224(), 28), match *self {
HashType::SHA256 => (ffi::EVP_sha256(), 32), MD5 => 16,
HashType::SHA384 => (ffi::EVP_sha384(), 48), SHA1 => 20,
HashType::SHA512 => (ffi::EVP_sha512(), 64), SHA224 => 28,
HashType::RIPEMD160 => (ffi::EVP_ripemd160(), 20), SHA256 => 32,
SHA384 => 48,
SHA512 => 64,
RIPEMD160 => 20,
}
}
/// Internal interface subject to removal.
#[inline]
pub fn evp_md(&self) -> *const ffi::EVP_MD {
unsafe {
use self::Type::*;
match *self {
MD5 => ffi::EVP_md5(),
SHA1 => ffi::EVP_sha1(),
SHA224 => ffi::EVP_sha224(),
SHA256 => ffi::EVP_sha256(),
SHA384 => ffi::EVP_sha384(),
SHA512 => ffi::EVP_sha512(),
RIPEMD160 => ffi::EVP_ripemd160(),
}
} }
} }
} }
pub struct HasherContext { #[derive(PartialEq, Copy)]
ptr: *mut ffi::EVP_MD_CTX enum State {
Reset,
Updated,
Finalized,
} }
impl HasherContext { use self::State::*;
pub fn new() -> HasherContext {
/// Provides message digest (hash) computation.
///
/// # Examples
///
/// Calculate a hash in one go.
///
/// ```
/// use openssl::crypto::hash::{hash, Type};
/// let data = b"\x42\xF4\x97\xE0";
/// let spec = b"\x7c\x43\x0f\x17\x8a\xef\xdf\x14\x87\xfe\xe7\x14\x4e\x96\x41\xe2";
/// let res = hash(Type::MD5, data);
/// assert_eq!(res, spec);
/// ```
///
/// Use the `Writer` trait to supply the input in chunks.
///
/// ```
/// use std::old_io::Writer;
/// use openssl::crypto::hash::{Hasher, Type};
/// let data = [b"\x42\xF4", b"\x97\xE0"];
/// let spec = b"\x7c\x43\x0f\x17\x8a\xef\xdf\x14\x87\xfe\xe7\x14\x4e\x96\x41\xe2";
/// let mut h = Hasher::new(Type::MD5);
/// h.write_all(data[0]);
/// h.write_all(data[1]);
/// let res = h.finish();
/// assert_eq!(res, spec);
/// ```
///
/// # Warning
///
/// Don't actually use MD5 and SHA-1 hashes, they're not secure anymore.
///
/// Don't ever hash passwords, use `crypto::pkcs5` or bcrypt/scrypt instead.
pub struct Hasher {
ctx: *mut ffi::EVP_MD_CTX,
md: *const ffi::EVP_MD,
type_: Type,
state: State,
}
impl Hasher {
/// Creates a new `Hasher` with the specified hash type.
pub fn new(ty: Type) -> Hasher {
ffi::init(); ffi::init();
unsafe { let ctx = unsafe {
HasherContext { ptr: ffi::EVP_MD_CTX_create() } let r = ffi::EVP_MD_CTX_create();
assert!(!r.is_null());
r
};
let md = ty.evp_md();
let mut h = Hasher { ctx: ctx, md: md, type_: ty, state: Finalized };
h.init();
h
}
#[inline]
fn init(&mut self) {
match self.state {
Reset => return,
Updated => { self.finalize(); },
Finalized => (),
} }
unsafe {
let r = ffi::EVP_DigestInit_ex(self.ctx, self.md, 0 as *const _);
assert_eq!(r, 1);
}
self.state = Reset;
}
#[inline]
fn update(&mut self, data: &[u8]) {
if self.state == Finalized {
self.init();
}
unsafe {
let r = ffi::EVP_DigestUpdate(self.ctx, data.as_ptr(),
data.len() as c_uint);
assert_eq!(r, 1);
}
self.state = Updated;
}
#[inline]
fn finalize(&mut self) -> Vec<u8> {
if self.state == Finalized {
self.init();
}
let md_len = self.type_.md_len();
let mut res: Vec<u8> = repeat(0).take(md_len).collect();
unsafe {
let mut len = 0;
let r = ffi::EVP_DigestFinal_ex(self.ctx, res.as_mut_ptr(), &mut len);
assert_eq!(len as usize, md_len);
assert_eq!(r, 1);
}
self.state = Finalized;
res
}
/// Returns the hash of the data written since creation or
/// the last `finish` and resets the hasher.
#[inline]
pub fn finish(&mut self) -> Vec<u8> {
self.finalize()
} }
} }
impl Drop for HasherContext { impl Writer for Hasher {
fn drop(&mut self) { #[inline]
unsafe { fn write_all(&mut self, buf: &[u8]) -> Result<(), IoError> {
ffi::EVP_MD_CTX_destroy(self.ptr);
}
}
}
#[allow(dead_code)]
pub struct Hasher {
evp: *const ffi::EVP_MD,
ctx: HasherContext,
len: u32,
}
impl old_io::Writer for Hasher {
fn write_all(&mut self, buf: &[u8]) -> old_io::IoResult<()> {
self.update(buf); self.update(buf);
Ok(()) Ok(())
} }
} }
impl Hasher { impl Clone for Hasher {
pub fn new(ht: HashType) -> Hasher { fn clone(&self) -> Hasher {
let ctx = HasherContext::new(); let ctx = unsafe {
Hasher::with_context(ctx, ht) let ctx = ffi::EVP_MD_CTX_create();
} assert!(!ctx.is_null());
let r = ffi::EVP_MD_CTX_copy_ex(ctx, self.ctx);
pub fn with_context(ctx: HasherContext, ht: HashType) -> Hasher { assert_eq!(r, 1);
let (evp, mdlen) = evpmd(ht); ctx
unsafe {
ffi::EVP_DigestInit_ex(ctx.ptr, evp, 0 as *const _);
}
Hasher { evp: evp, ctx: ctx, len: mdlen }
}
/// Update this hasher with more input bytes
pub fn update(&mut self, data: &[u8]) {
unsafe {
ffi::EVP_DigestUpdate(self.ctx.ptr, data.as_ptr(), data.len() as c_uint);
}
}
/**
* Return the digest of all bytes added to this hasher since its last
* initialization
*/
pub fn finalize(self) -> Vec<u8> {
let (res, _) = self.finalize_reuse();
res
}
/**
* Return the digest of all bytes added to this hasher since its last
* initialization and its context for reuse
*/
pub fn finalize_reuse(self) -> (Vec<u8>, HasherContext) {
let mut res = repeat(0u8).take(self.len as usize).collect::<Vec<_>>();
unsafe {
ffi::EVP_DigestFinal_ex(self.ctx.ptr, res.as_mut_ptr(), ptr::null_mut())
}; };
(res, self.ctx) Hasher { ctx: ctx, md: self.md, type_: self.type_, state: self.state }
} }
} }
/** impl Drop for Hasher {
* Hashes the supplied input data using hash t, returning the resulting hash fn drop(&mut self) {
* value unsafe {
*/ if self.state != Finalized {
pub fn hash(t: HashType, data: &[u8]) -> Vec<u8> { let mut buf: Vec<u8> = repeat(0).take(self.type_.md_len()).collect();
let mut len = 0;
ffi::EVP_DigestFinal_ex(self.ctx, buf.as_mut_ptr(), &mut len);
}
ffi::EVP_MD_CTX_destroy(self.ctx);
}
}
}
/// Computes the hash of the `data` with the hash `t`.
pub fn hash(t: Type, data: &[u8]) -> Vec<u8> {
let mut h = Hasher::new(t); let mut h = Hasher::new(t);
h.update(data); let _ = h.write_all(data);
h.finalize() h.finish()
} }
#[cfg(test)] #[cfg(test)]
mod tests { mod tests {
use serialize::hex::{FromHex, ToHex}; use serialize::hex::{FromHex, ToHex};
use super::{hash, Hasher, Type};
use std::old_io::Writer;
struct HashTest { fn hash_test(hashtype: Type, hashtest: &(&str, &str)) {
input: Vec<u8>, let res = hash(hashtype, &*hashtest.0.from_hex().unwrap());
expected_output: String assert_eq!(res.to_hex(), hashtest.1);
} }
#[allow(non_snake_case)] fn hash_recycle_test(h: &mut Hasher, hashtest: &(&str, &str)) {
fn HashTest(input: &str, output: &str) -> HashTest { let _ = h.write_all(&*hashtest.0.from_hex().unwrap());
HashTest { input: input.from_hex().unwrap(), let res = h.finish();
expected_output: output.to_string() } assert_eq!(res.to_hex(), hashtest.1);
}
fn compare(calced_raw: Vec<u8>, hashtest: &HashTest) {
let calced = calced_raw.as_slice().to_hex().to_string();
if calced != hashtest.expected_output {
println!("Test failed - {} != {}", calced, hashtest.expected_output);
}
assert!(calced == hashtest.expected_output);
}
fn hash_test(hashtype: super::HashType, hashtest: &HashTest) {
let calced_raw = super::hash(hashtype, hashtest.input.as_slice());
compare(calced_raw, hashtest);
}
fn hash_reuse_test(ctx: super::HasherContext, hashtype: super::HashType,
hashtest: &HashTest) -> super::HasherContext {
let mut h = super::Hasher::with_context(ctx, hashtype);
h.update(hashtest.input.as_slice());
let (calced_raw, ctx) = h.finalize_reuse();
compare(calced_raw, hashtest);
ctx
}
pub fn hash_writer(t: super::HashType, data: &[u8]) -> Vec<u8> {
let mut h = super::Hasher::new(t);
h.write_all(data).unwrap();
h.finalize()
} }
// Test vectors from http://www.nsrl.nist.gov/testdata/ // Test vectors from http://www.nsrl.nist.gov/testdata/
#[allow(non_upper_case_globals)]
const md5_tests: [(&'static str, &'static str); 13] = [
("", "d41d8cd98f00b204e9800998ecf8427e"),
("7F", "83acb6e67e50e31db6ed341dd2de1595"),
("EC9C", "0b07f0d4ca797d8ac58874f887cb0b68"),
("FEE57A", "e0d583171eb06d56198fc0ef22173907"),
("42F497E0", "7c430f178aefdf1487fee7144e9641e2"),
("C53B777F1C", "75ef141d64cb37ec423da2d9d440c925"),
("89D5B576327B", "ebbaf15eb0ed784c6faa9dc32831bf33"),
("5D4CCE781EB190", "ce175c4b08172019f05e6b5279889f2c"),
("81901FE94932D7B9", "cd4d2f62b8cdb3a0cf968a735a239281"),
("C9FFDEE7788EFB4EC9", "e0841a231ab698db30c6c0f3f246c014"),
("66AC4B7EBA95E53DC10B", "a3b3cea71910d9af56742aa0bb2fe329"),
("A510CD18F7A56852EB0319", "577e216843dd11573574d3fb209b97d8"),
("AAED18DBE8938C19ED734A8D", "6f80fb775f27e0a4ce5c2f42fc72c5f1")
];
#[test] #[test]
fn test_md5() { fn test_md5() {
let tests = [ for test in md5_tests.iter() {
HashTest("", "d41d8cd98f00b204e9800998ecf8427e"), hash_test(Type::MD5, test);
HashTest("7F", "83acb6e67e50e31db6ed341dd2de1595"),
HashTest("EC9C", "0b07f0d4ca797d8ac58874f887cb0b68"),
HashTest("FEE57A", "e0d583171eb06d56198fc0ef22173907"),
HashTest("42F497E0", "7c430f178aefdf1487fee7144e9641e2"),
HashTest("C53B777F1C", "75ef141d64cb37ec423da2d9d440c925"),
HashTest("89D5B576327B", "ebbaf15eb0ed784c6faa9dc32831bf33"),
HashTest("5D4CCE781EB190", "ce175c4b08172019f05e6b5279889f2c"),
HashTest("81901FE94932D7B9", "cd4d2f62b8cdb3a0cf968a735a239281"),
HashTest("C9FFDEE7788EFB4EC9", "e0841a231ab698db30c6c0f3f246c014"),
HashTest("66AC4B7EBA95E53DC10B", "a3b3cea71910d9af56742aa0bb2fe329"),
HashTest("A510CD18F7A56852EB0319", "577e216843dd11573574d3fb209b97d8"),
HashTest("AAED18DBE8938C19ED734A8D", "6f80fb775f27e0a4ce5c2f42fc72c5f1")];
let mut ctx = super::HasherContext::new();
for test in tests.iter() {
ctx = hash_reuse_test(ctx, super::HashType::MD5, test);
} }
} }
#[test]
fn test_md5_recycle() {
let mut h = Hasher::new(Type::MD5);
for test in md5_tests.iter() {
hash_recycle_test(&mut h, test);
}
}
#[test]
fn test_finish_twice() {
let mut h = Hasher::new(Type::MD5);
let _ = h.write_all(&*md5_tests[6].0.from_hex().unwrap());
let _ = h.finish();
let res = h.finish();
let null = hash(Type::MD5, &[]);
assert_eq!(res, null);
}
#[test]
fn test_clone() {
let i = 7;
let inp = md5_tests[i].0.from_hex().unwrap();
assert!(inp.len() > 2);
let p = inp.len() / 2;
let h0 = Hasher::new(Type::MD5);
println!("Clone a new hasher");
let mut h1 = h0.clone();
let _ = h1.write_all(&inp[..p]);
{
println!("Clone an updated hasher");
let mut h2 = h1.clone();
let _ = h2.write_all(&inp[p..]);
let res = h2.finish();
assert_eq!(res.to_hex(), md5_tests[i].1);
}
let _ = h1.write_all(&inp[p..]);
let res = h1.finish();
assert_eq!(res.to_hex(), md5_tests[i].1);
println!("Clone a finished hasher");
let mut h3 = h1.clone();
let _ = h3.write_all(&*md5_tests[i + 1].0.from_hex().unwrap());
let res = h3.finish();
assert_eq!(res.to_hex(), md5_tests[i + 1].1);
}
#[test] #[test]
fn test_sha1() { fn test_sha1() {
let tests = [ let tests = [
HashTest("616263", "a9993e364706816aba3e25717850c26c9cd0d89d"), ("616263", "a9993e364706816aba3e25717850c26c9cd0d89d"),
]; ];
for test in tests.iter() { for test in tests.iter() {
hash_test(super::HashType::SHA1, test); hash_test(Type::SHA1, test);
} }
} }
#[test] #[test]
fn test_sha256() { fn test_sha256() {
let tests = [ let tests = [
HashTest("616263", "ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad") ("616263", "ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad")
]; ];
for test in tests.iter() { for test in tests.iter() {
hash_test(super::HashType::SHA256, test); hash_test(Type::SHA256, test);
} }
} }
#[test] #[test]
fn test_ripemd160() { fn test_ripemd160() {
let tests = [ let tests = [
HashTest("616263", "8eb208f7e05d987a9b044a8e98c6b087f15a0bfc") ("616263", "8eb208f7e05d987a9b044a8e98c6b087f15a0bfc")
]; ];
for test in tests.iter() { for test in tests.iter() {
hash_test(super::HashType::RIPEMD160, test); hash_test(Type::RIPEMD160, test);
} }
} }
#[test]
fn test_writer() {
let tv = "rust-openssl".as_bytes();
let ht = super::HashType::RIPEMD160;
assert!(hash_writer(ht, tv) == super::hash(ht, tv));
}
} }

View File

@ -16,66 +16,201 @@
use libc::{c_int, c_uint}; use libc::{c_int, c_uint};
use std::iter::repeat; use std::iter::repeat;
use std::old_io::{IoError, Writer};
use crypto::hash; use crypto::hash::Type;
use ffi; use ffi;
pub struct HMAC { #[derive(PartialEq, Copy)]
ctx: ffi::HMAC_CTX, enum State {
len: u32, Reset,
Updated,
Finalized,
} }
#[allow(non_snake_case)] use self::State::*;
pub fn HMAC(ht: hash::HashType, key: &[u8]) -> HMAC {
unsafe {
ffi::init();
let (evp, mdlen) = hash::evpmd(ht); /// Provides HMAC computation.
///
let mut ctx : ffi::HMAC_CTX = ::std::mem::uninitialized(); /// # Examples
///
ffi::HMAC_CTX_init(&mut ctx); /// Calculate a HMAC in one go.
ffi::HMAC_Init_ex(&mut ctx, ///
key.as_ptr(), /// ```
key.len() as c_int, /// use openssl::crypto::hash::Type;
evp, 0 as *const _); /// use openssl::crypto::hmac::hmac;
/// let key = b"Jefe";
HMAC { ctx: ctx, len: mdlen } /// let data = b"what do ya want for nothing?";
} /// let spec = b"\x75\x0c\x78\x3e\x6a\xb0\xb5\x03\xea\xa8\x6e\x31\x0a\x5d\xb7\x38";
/// let res = hmac(Type::MD5, key, data);
/// assert_eq!(spec, res);
/// ```
///
/// Use the `Writer` trait to supply the input in chunks.
///
/// ```
/// use std::old_io::Writer;
/// use openssl::crypto::hash::Type;
/// use openssl::crypto::hmac::HMAC;
/// let key = b"Jefe";
/// let data = [b"what do ya ", b"want for nothing?"];
/// let spec = b"\x75\x0c\x78\x3e\x6a\xb0\xb5\x03\xea\xa8\x6e\x31\x0a\x5d\xb7\x38";
/// let mut h = HMAC::new(Type::MD5, &*key);
/// h.write_all(data[0]);
/// h.write_all(data[1]);
/// let res = h.finish();
/// assert_eq!(spec, res);
/// ```
pub struct HMAC {
ctx: ffi::HMAC_CTX,
type_: Type,
state: State,
} }
impl HMAC { impl HMAC {
pub fn update(&mut self, data: &[u8]) { /// Creates a new `HMAC` with the specified hash type using the `key`.
unsafe { pub fn new(ty: Type, key: &[u8]) -> HMAC {
ffi::HMAC_Update(&mut self.ctx, data.as_ptr(), data.len() as c_uint); ffi::init();
}
let ctx = unsafe {
let mut ctx = ::std::mem::uninitialized();
ffi::HMAC_CTX_init(&mut ctx);
ctx
};
let md = ty.evp_md();
let mut h = HMAC { ctx: ctx, type_: ty, state: Finalized };
h.init_once(md, key);
h
} }
pub fn finalize(&mut self) -> Vec<u8> { #[inline]
fn init_once(&mut self, md: *const ffi::EVP_MD, key: &[u8]) {
unsafe { unsafe {
let mut res: Vec<u8> = repeat(0).take(self.len as usize).collect(); let r = ffi::HMAC_Init_ex(&mut self.ctx,
let mut outlen = 0; key.as_ptr(), key.len() as c_int,
ffi::HMAC_Final(&mut self.ctx, res.as_mut_ptr(), &mut outlen); md, 0 as *const _);
assert!(self.len == outlen as u32); assert_eq!(r, 1);
res
} }
self.state = Reset;
}
#[inline]
fn init(&mut self) {
match self.state {
Reset => return,
Updated => { self.finalize(); },
Finalized => (),
}
// If the key and/or md is not supplied it's reused from the last time
// avoiding redundant initializations
unsafe {
let r = ffi::HMAC_Init_ex(&mut self.ctx,
0 as *const _, 0,
0 as *const _, 0 as *const _);
assert_eq!(r, 1);
}
self.state = Reset;
}
#[inline]
fn update(&mut self, data: &[u8]) {
if self.state == Finalized {
self.init();
}
unsafe {
let r = ffi::HMAC_Update(&mut self.ctx, data.as_ptr(),
data.len() as c_uint);
assert_eq!(r, 1);
}
self.state = Updated;
}
#[inline]
fn finalize(&mut self) -> Vec<u8> {
if self.state == Finalized {
self.init();
}
let md_len = self.type_.md_len();
let mut res: Vec<u8> = repeat(0).take(md_len).collect();
unsafe {
let mut len = 0;
let r = ffi::HMAC_Final(&mut self.ctx, res.as_mut_ptr(), &mut len);
assert_eq!(len as usize, md_len);
assert_eq!(r, 1);
}
self.state = Finalized;
res
}
/// Returns the hash of the data written since creation or
/// the last `finish` and resets the hasher.
#[inline]
pub fn finish(&mut self) -> Vec<u8> {
self.finalize()
}
}
impl Writer for HMAC {
#[inline]
fn write_all(&mut self, buf: &[u8]) -> Result<(), IoError> {
self.update(buf);
Ok(())
}
}
impl Clone for HMAC {
fn clone(&self) -> HMAC {
let mut ctx: ffi::HMAC_CTX;
unsafe {
ctx = ::std::mem::uninitialized();
let r = ffi::HMAC_CTX_copy(&mut ctx, &self.ctx);
assert_eq!(r, 1);
}
HMAC { ctx: ctx, type_: self.type_, state: self.state }
} }
} }
impl Drop for HMAC { impl Drop for HMAC {
fn drop(&mut self) { fn drop(&mut self) {
unsafe { unsafe {
if self.state != Finalized {
let mut buf: Vec<u8> = repeat(0).take(self.type_.md_len()).collect();
let mut len = 0;
ffi::HMAC_Final(&mut self.ctx, buf.as_mut_ptr(), &mut len);
}
ffi::HMAC_CTX_cleanup(&mut self.ctx); ffi::HMAC_CTX_cleanup(&mut self.ctx);
} }
} }
} }
/// Computes the HMAC of the `data` with the hash `t` and `key`.
pub fn hmac(t: Type, key: &[u8], data: &[u8]) -> Vec<u8> {
let mut h = HMAC::new(t, key);
let _ = h.write_all(data);
h.finish()
}
#[cfg(test)] #[cfg(test)]
mod tests { mod tests {
use std::iter::repeat; use std::iter::repeat;
use serialize::hex::FromHex; use serialize::hex::FromHex;
use crypto::hash::HashType::{self, MD5, SHA1, SHA224, SHA256, SHA384, SHA512}; use crypto::hash::Type;
use super::HMAC; use crypto::hash::Type::*;
use super::{hmac, HMAC};
use std::old_io::Writer;
fn test_hmac(ty: Type, tests: &[(Vec<u8>, Vec<u8>, Vec<u8>)]) {
for &(ref key, ref data, ref res) in tests.iter() {
assert_eq!(hmac(ty, &**key, &**data), *res);
}
}
fn test_hmac_recycle(h: &mut HMAC, test: &(Vec<u8>, Vec<u8>, Vec<u8>)) {
let &(_, ref data, ref res) = test;
let _ = h.write_all(&**data);
assert_eq!(h.finish(), *res);
}
#[test] #[test]
fn test_hmac_md5() { fn test_hmac_md5() {
@ -103,13 +238,78 @@ mod tests {
"6f630fad67cda0ee1fb1f562db3aa53e".from_hex().unwrap()) "6f630fad67cda0ee1fb1f562db3aa53e".from_hex().unwrap())
]; ];
for &(ref key, ref data, ref res) in tests.iter() { test_hmac(MD5, &tests);
let mut hmac = HMAC(MD5, key.as_slice()); }
hmac.update(data.as_slice());
assert_eq!(hmac.finalize(), *res); #[test]
fn test_hmac_md5_recycle() {
let tests: [(Vec<u8>, Vec<u8>, Vec<u8>); 2] = [
(repeat(0xaa_u8).take(80).collect(),
b"Test Using Larger Than Block-Size Key - Hash Key First".to_vec(),
"6b1ab7fe4bd7bf8f0b62e6ce61b9d0cd".from_hex().unwrap()),
(repeat(0xaa_u8).take(80).collect(),
b"Test Using Larger Than Block-Size Key \
and Larger Than One Block-Size Data".to_vec(),
"6f630fad67cda0ee1fb1f562db3aa53e".from_hex().unwrap())
];
let mut h = HMAC::new(MD5, &*tests[0].0);
for i in 0..100us {
let test = &tests[i % 2];
test_hmac_recycle(&mut h, test);
} }
} }
#[test]
fn test_finish_twice() {
let test: (Vec<u8>, Vec<u8>, Vec<u8>) =
(repeat(0xaa_u8).take(80).collect(),
b"Test Using Larger Than Block-Size Key - Hash Key First".to_vec(),
"6b1ab7fe4bd7bf8f0b62e6ce61b9d0cd".from_hex().unwrap());
let mut h = HMAC::new(Type::MD5, &*test.0);
let _ = h.write_all(&*test.1);
let _ = h.finish();
let res = h.finish();
let null = hmac(Type::MD5, &*test.0, &[]);
assert_eq!(res, null);
}
#[test]
fn test_clone() {
let tests: [(Vec<u8>, Vec<u8>, Vec<u8>); 2] = [
(repeat(0xaa_u8).take(80).collect(),
b"Test Using Larger Than Block-Size Key - Hash Key First".to_vec(),
"6b1ab7fe4bd7bf8f0b62e6ce61b9d0cd".from_hex().unwrap()),
(repeat(0xaa_u8).take(80).collect(),
b"Test Using Larger Than Block-Size Key \
and Larger Than One Block-Size Data".to_vec(),
"6f630fad67cda0ee1fb1f562db3aa53e".from_hex().unwrap()),
];
let p = tests[0].0.len() / 2;
let h0 = HMAC::new(Type::MD5, &*tests[0].0);
println!("Clone a new hmac");
let mut h1 = h0.clone();
let _ = h1.write_all(&tests[0].1[..p]);
{
println!("Clone an updated hmac");
let mut h2 = h1.clone();
let _ = h2.write_all(&tests[0].1[p..]);
let res = h2.finish();
assert_eq!(res, tests[0].2);
}
let _ = h1.write_all(&tests[0].1[p..]);
let res = h1.finish();
assert_eq!(res, tests[0].2);
println!("Clone a finished hmac");
let mut h3 = h1.clone();
let _ = h3.write_all(&*tests[1].1);
let res = h3.finish();
assert_eq!(res, tests[1].2);
}
#[test] #[test]
fn test_hmac_sha1() { fn test_hmac_sha1() {
// test vectors from RFC 2202 // test vectors from RFC 2202
@ -136,14 +336,31 @@ mod tests {
"e8e99d0f45237d786d6bbaa7965c7808bbff1a91".from_hex().unwrap()) "e8e99d0f45237d786d6bbaa7965c7808bbff1a91".from_hex().unwrap())
]; ];
for &(ref key, ref data, ref res) in tests.iter() { test_hmac(SHA1, &tests);
let mut hmac = HMAC(SHA1, key.as_slice()); }
hmac.update(data.as_slice());
assert_eq!(hmac.finalize(), *res); #[test]
fn test_hmac_sha1_recycle() {
let tests: [(Vec<u8>, Vec<u8>, Vec<u8>); 2] = [
(repeat(0xaa_u8).take(80).collect(),
b"Test Using Larger Than Block-Size Key - Hash Key First".to_vec(),
"aa4ae5e15272d00e95705637ce8a3b55ed402112".from_hex().unwrap()),
(repeat(0xaa_u8).take(80).collect(),
b"Test Using Larger Than Block-Size Key \
and Larger Than One Block-Size Data".to_vec(),
"e8e99d0f45237d786d6bbaa7965c7808bbff1a91".from_hex().unwrap())
];
let mut h = HMAC::new(SHA1, &*tests[0].0);
for i in 0..100us {
let test = &tests[i % 2];
test_hmac_recycle(&mut h, test);
} }
} }
fn test_sha2(ty: HashType, results: &[Vec<u8>]) {
fn test_sha2(ty: Type, results: &[Vec<u8>]) {
// test vectors from RFC 4231 // test vectors from RFC 4231
let tests: [(Vec<u8>, Vec<u8>); 6] = [ let tests: [(Vec<u8>, Vec<u8>); 6] = [
(repeat(0xb_u8).take(20).collect(), b"Hi There".to_vec()), (repeat(0xb_u8).take(20).collect(), b"Hi There".to_vec()),
@ -161,9 +378,15 @@ mod tests {
]; ];
for (&(ref key, ref data), res) in tests.iter().zip(results.iter()) { for (&(ref key, ref data), res) in tests.iter().zip(results.iter()) {
let mut hmac = HMAC(ty, key.as_slice()); assert_eq!(hmac(ty, &**key, &**data), *res);
hmac.update(data.as_slice()); }
assert_eq!(hmac.finalize(), *res);
// recycle test
let mut h = HMAC::new(ty, &*tests[5].0);
for i in 0..100us {
let test = &tests[4 + i % 2];
let tup = (test.0.clone(), test.1.clone(), results[4 + i % 2].clone());
test_hmac_recycle(&mut h, &tup);
} }
} }

View File

@ -3,7 +3,8 @@ use std::iter::repeat;
use std::mem; use std::mem;
use std::ptr; use std::ptr;
use bio::{MemBio}; use bio::{MemBio};
use crypto::hash::HashType; use crypto::hash;
use crypto::hash::Type as HashType;
use ffi; use ffi;
use ssl::error::{SslError, StreamError}; use ssl::error::{SslError, StreamError};
@ -276,7 +277,7 @@ impl PKey {
*/ */
pub fn verify(&self, m: &[u8], s: &[u8]) -> bool { self.verify_with_hash(m, s, HashType::SHA256) } pub fn verify(&self, m: &[u8], s: &[u8]) -> bool { self.verify_with_hash(m, s, HashType::SHA256) }
pub fn sign_with_hash(&self, s: &[u8], hash: HashType) -> Vec<u8> { pub fn sign_with_hash(&self, s: &[u8], hash: hash::Type) -> Vec<u8> {
unsafe { unsafe {
let rsa = ffi::EVP_PKEY_get1_RSA(self.evp); let rsa = ffi::EVP_PKEY_get1_RSA(self.evp);
let len = ffi::RSA_size(rsa); let len = ffi::RSA_size(rsa);
@ -300,7 +301,7 @@ impl PKey {
} }
} }
pub fn verify_with_hash(&self, m: &[u8], s: &[u8], hash: HashType) -> bool { pub fn verify_with_hash(&self, m: &[u8], s: &[u8], hash: hash::Type) -> bool {
unsafe { unsafe {
let rsa = ffi::EVP_PKEY_get1_RSA(self.evp); let rsa = ffi::EVP_PKEY_get1_RSA(self.evp);
@ -332,7 +333,7 @@ impl Drop for PKey {
#[cfg(test)] #[cfg(test)]
mod tests { mod tests {
use crypto::hash::HashType::{MD5, SHA1}; use crypto::hash::Type::{MD5, SHA1};
#[test] #[test]
fn test_gen_pub() { fn test_gen_pub() {

View File

@ -3,7 +3,7 @@ use std::old_io::net::tcp::TcpStream;
use std::old_io::{Writer}; use std::old_io::{Writer};
use std::thread::Thread; use std::thread::Thread;
use crypto::hash::HashType::{SHA256}; use crypto::hash::Type::{SHA256};
use ssl::SslMethod::Sslv23; use ssl::SslMethod::Sslv23;
use ssl::{SslContext, SslStream, VerifyCallback}; use ssl::{SslContext, SslStream, VerifyCallback};
use ssl::SslVerifyMode::SslVerifyPeer; use ssl::SslVerifyMode::SslVerifyPeer;

View File

@ -8,7 +8,8 @@ use std::ptr;
use asn1::{Asn1Time}; use asn1::{Asn1Time};
use bio::{MemBio}; use bio::{MemBio};
use crypto::hash::{HashType, evpmd}; use crypto::hash;
use crypto::hash::Type as HashType;
use crypto::pkey::{PKey}; use crypto::pkey::{PKey};
use crypto::rand::rand_bytes; use crypto::rand::rand_bytes;
use ffi; use ffi;
@ -152,14 +153,14 @@ impl<'a, T: AsStr<'a>> ToStr for Vec<T> {
/// use std::old_io::{File, Open, Write}; /// use std::old_io::{File, Open, Write};
/// # use std::old_io::fs; /// # use std::old_io::fs;
/// ///
/// use openssl::crypto::hash::HashType; /// use openssl::crypto::hash::Type;
/// use openssl::x509::{KeyUsage, X509Generator}; /// use openssl::x509::{KeyUsage, X509Generator};
/// ///
/// let gen = X509Generator::new() /// let gen = X509Generator::new()
/// .set_bitlength(2048) /// .set_bitlength(2048)
/// .set_valid_period(365*2) /// .set_valid_period(365*2)
/// .set_CN("SuperMegaCorp Inc.") /// .set_CN("SuperMegaCorp Inc.")
/// .set_sign_hash(HashType::SHA256) /// .set_sign_hash(Type::SHA256)
/// .set_usage(&[KeyUsage::DigitalSignature]); /// .set_usage(&[KeyUsage::DigitalSignature]);
/// ///
/// let (cert, pkey) = gen.generate().unwrap(); /// let (cert, pkey) = gen.generate().unwrap();
@ -236,7 +237,7 @@ impl X509Generator {
self self
} }
pub fn set_sign_hash(mut self, hash_type: HashType) -> X509Generator { pub fn set_sign_hash(mut self, hash_type: hash::Type) -> X509Generator {
self.hash_type = hash_type; self.hash_type = hash_type;
self self
} }
@ -331,7 +332,7 @@ impl X509Generator {
self.ext_key_usage.to_str().as_slice())); self.ext_key_usage.to_str().as_slice()));
} }
let (hash_fn, _) = evpmd(self.hash_type); let hash_fn = self.hash_type.evp_md();
try_ssl!(ffi::X509_sign(x509.handle, p_key.get_handle(), hash_fn)); try_ssl!(ffi::X509_sign(x509.handle, p_key.get_handle(), hash_fn));
Ok((x509, p_key)) Ok((x509, p_key))
} }
@ -387,8 +388,9 @@ impl<'ctx> X509<'ctx> {
} }
/// Returns certificate fingerprint calculated using provided hash /// Returns certificate fingerprint calculated using provided hash
pub fn fingerprint(&self, hash_type: HashType) -> Option<Vec<u8>> { pub fn fingerprint(&self, hash_type: hash::Type) -> Option<Vec<u8>> {
let (evp, len) = evpmd(hash_type); let evp = hash_type.evp_md();
let len = hash_type.md_len();
let v: Vec<u8> = repeat(0).take(len as usize).collect(); let v: Vec<u8> = repeat(0).take(len as usize).collect();
let act_len: c_uint = 0; let act_len: c_uint = 0;
let res = unsafe { let res = unsafe {
@ -399,7 +401,7 @@ impl<'ctx> X509<'ctx> {
match res { match res {
0 => None, 0 => None,
_ => { _ => {
let act_len = act_len as u32; let act_len = act_len as usize;
match len.cmp(&act_len) { match len.cmp(&act_len) {
Ordering::Greater => None, Ordering::Greater => None,
Ordering::Equal => Some(v), Ordering::Equal => Some(v),

View File

@ -2,7 +2,7 @@ use serialize::hex::FromHex;
use std::old_io::{File, Open, Read}; use std::old_io::{File, Open, Read};
use std::old_io::util::NullWriter; use std::old_io::util::NullWriter;
use crypto::hash::HashType::{SHA256}; use crypto::hash::Type::{SHA256};
use x509::{X509, X509Generator}; use x509::{X509, X509Generator};
use x509::KeyUsage::{DigitalSignature, KeyEncipherment}; use x509::KeyUsage::{DigitalSignature, KeyEncipherment};
use x509::ExtKeyUsage::{ClientAuth, ServerAuth}; use x509::ExtKeyUsage::{ClientAuth, ServerAuth};